

DIELECTRIC ACCELERATORS IN MICROWAVE REGIME AND A SHORT PULSE COLLIDER CONCEPT

CHUNGUANG JING AWA & EUCLID TECHLABS

> AWLC2017 June, 2017

OUTLINE

- 1. Introduction of Dielectric Accelerators
- 2. AWA's concept of a multi-TeV linear collider
- 3. Progress updates
- 4. Summary

INTRODUCTION OF DIELECTRIC ACCELERATORS

DIELECTRIC ACCELERATORS

Features:

- Simple geometry.
- Small transverse size.
- Short rf pulse, high repetition rate, preferred.

Electric Field Vectors

 	* * * * * *	* * • • •	· • • • • • • • • • • • • • •	
 , < < 	/	1 1	· · · · · · · · · · · · · · · · · · ·	• •
 , .			~ ~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~	, ,
 	• >- 3> 3> 3> >- >-			
 · · • - =	· [> > > > > >	/		
 1 /	· >>>>	• • • • /		, <u>1</u>
 		* * * * *		, I

TRAVELING WAVE DLA

- Single piece dielectric tube
- Broad band
- no field enhancement at surface

1

>Ch1: Start 11.1240 GHz

CH 1: S21

Stop 11.7240 GHz

STANDING WAVE DLA

- Easy coupling
- Easy tuning
- no field enhancement at surface

DIELECTRIC BEAM POWER EXTRACTOR (2014)

- Easy damping
- Low cost fabrication
- Low surface field

Transverse mode damping

AWA'S CONCEPT OF A MULTI-TEV LINEAR COLLIDER

ARGONNE FLEXIBLE LINEAR COLLIDER 3TeV 30MW beam power TBA

Based on scientifically mature and low cost Dielectric TBA technologies

- Short rf pulse (20ns) for high gradient (e⁺ e⁻ 200MeV/m of effective gradient)
- Modular design \rightarrow easily staged
- Wall plug efficiency (~10%)

ZOOM-IN FOR EACH 150GEV AFLC MODULE

ZOOM-IN TO AFLC STRUCTURE LEVEL

AFLC Beam Power for high luminosity:

AFLC Power and efficiency flow chart

Improved AFLC Power and efficiency

LATEST PROGRESS UPDATES

AWA FACILITY

AWA FACILITY: DEMONSTRATING CRITICAL TECHNOLOGY ELEMENTS

11.7 GHZ METALLIC TBA ACCELERATION

HIGHLIGHTED RESULTS

- ~300MW RF power at X-band
- ~150MeV/m acceleration gradient
- demonstration of staged acceleration

THE 26GHZ FULL DIELECTRIC SHORT PULSE TBA TEST

Note: RF power/gradient is lower than the ideal case due to the combination of RF loss in the waveguide, miss-match of the phase advance, and inefficient rf coupling, etc.

X-BAND (11.7GHZ) DIELECTRIC TBA (TO BE TESTED IN 2017)

Power Extractor

	Value
Freq.	11.7GHz
Material	A12O3
Aperture	15mm
Length	30cm
Passing Charge	8 x 40nC
Power	280MW

Accelerator

	Value	
Freq.	11.7GHz	
Material	MCT16	
Aperture	6mm	
Length	15cm	
Input power	280MW	
Gradient	100MV/m	

ULTRAFAST KICKER FOR DRIVE BEAM DISTRIBUTION (2017)

1meter stripline kicker

ARBITRARY BUNCH SHAPER USING EEX OR DEEX

Using Micro-Lens Array and mask produce the "ideal" transverse shaped bunch (Drive + witness bunches).

➤ Using Emittance Exchanger or Double Emittance Exchanger to transform the beam transverse profile to the current temporal profile.

BUNCH SHAPING WITH EEX DEMONSTRATED

SUMMARY

•AWA actively participates global HEP collider R&D.

•AWA continues working on the critical technical elements to meet requirements of the future linear collider design.

• AWA welcomes students, users, and collaborators.

