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Single Cell SW Accelerating Structures

Goals:

« We want to study rf breakdowns in practical accelerating
structures:

— dependence on circuit parameters, materials, cell shapes and surface
processing techniques.

Difficulties:
 Full scale structures are long, complex, and expensive

Solution:

 Single cell standing wave (SW) structures with properties close to
that of full scale structures

» Reusable couplers
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Single Cell SW Accelerating Structures

* The fields are
highest in
middle cell.
Breakdowns

occur within
that cell

SLAC-KEK-INFN
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State of Art at SLAC: Room Temeprature

»  Breakdown rate is correlated with fields inside the accelerating structure.
—  We found peak pulse heating to be a good predictor of the breakdown rate in simple disk-loaded-waveguide type geometries.
—  We found the “modified Poynting vector” to be a practical predictor of the breakdown rate in more complex geometries.
*  We conjecture that the breakdown rate is linked to movements of crystal defects induced by periodic stress. Pulse heating may
create some or, possibly a major part of this stress. By decreasing crystal mobility and increasing yield stress we will reduce
the breakdown rate for the same gradient.

»  Motivated by correlation of peak pulse heating and breakdown rate we study hard cooper alloys and methods of building
structures out of them.
—  We found that hard Cu and hard CuAg have better performance than soft heat-treated copper.
—  Currently, hard CuAg has the record performance for room temperature structures
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RF Surface Resistance Decreases

» As the temperature decreases, the electron conductivity increases

— REF surface resistance decreases by a factor of over 4 for 11.424 GHz

* Less rf power is required, and less rf pulse heating is created, for a given
accelerating gradient.
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TE, Dome Cavity

* Flat copper samples of varying
purity and grain size. o
 Goes down to ~4K. CH40415

* Q,increases by factor of 4.1 at
114GHz
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Thermal Stress and rf Pulsed Heating Reduced

 Thermal conductivity is larger at 30 K, rf pulsed heating is decreased by
about a factor of 2 from room temperature for same gradient.
* As the thermal expansion coefficient decreases, thermal stress,
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Normal Conducting Cryo Structures

Pros:
* Decreased rf losses

« Harder material
— Yield Strength and Young’s Modulus increase

» Decreased thermal stress from rf pulsed heating
 Vacuum pumping is improved

Cons:;

* Since the cavity acts as a cryogenic vacuum pump any vacuum leak or
other source of gasses could contaminate high field surfaces.

 Due to reduced cooling efficiency at low temperature, overall efficiency of
the system is decreased. High repetition-rate operation is problematic.




1C-SW-T2.75-A2.0-Cryo-Cu, 11.3925 GHz: 10 MW rf Input
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Discrepancies in High Power data

 We were not able to match the rf and dark current signals using

the design static Q,. We hypothesized that the Q, was changing
during the rf pulse.

* We improved accuracy and dynamic range of rf diagnostics.
* Used a Network analyzer down to cryo temperatures.

* We build a circuit model of the whole rf network, from klystron to
cavity to understand its behavior.

* To understand the changing Q, effect, we systematically
measured Q, at a range of klystron power vs. temperature,
repetition rate, and pulse length.
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Network Analyzer Measurements

o 1C-SW-A2.75-T2.0-cryo-cu-SLAC-#2:
Q, improvement in accelerating structure is lower than that
of dome cavity.

+ This measurement was completed after breakdown
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Low power data matches constant Q, circuit model;

high power disagreement

Low Power . HighPower
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Calculating accelerating gradient with time-dependent Q0

. Q0 and w0, the resonant frequency, are allowed to vary in time
during the rf pulse.
. The differential equation describing the electric field:
dE  wy 1 N Em a2 L W Wo 8Pinw;
F[E+w[a—2c})+.€([mﬂ—m }—sm{Qﬂ+QE]}— O
. Magnitude of the Q, decay is chosen to match the measured
dark current and rf signal.
. Dark current is exponentially dependent on

electric field, accurately measures gradient.

Equation modified from
D. Pritzkau RF Pulsed
Heating. 2001




Example: Model fit for shaped pulse with flat part 400 ns, T=45 K
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We found that the best fit came when:

* Q,changed very quickly as the field
increased.

* The frequency changed slowly across
the rf pulse




No Obvious Dependence of Final Q, on Pulse Length

* Final QQO, is the value used to match the measured rf and dark current signals
» Data for 45 K, 30Hz, with varying flat top gradient.
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Dark Current Correlated to Missing Power

The missing power is the amount of power lost not explained by the linear

circuit model.

We conjecture the change in QO is consistent with dark current beam loading.
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Field Emission Simulation

* Distribution of field emitted electrons
On metal wall, up and down stream ends

* Energy spectrum of electrons when they hit a surface

e Fowler Nordheim Field emission

J(”,t)=l.54x1o(_6+t5?2)ﬁ [653[31509‘/“‘)
@

e ~1% of total field emitted electrons reach current monitors

4e+18

llllllllllll

* Average power in the dark
current beam predicted by this
simplified model is about factor
of 3 smaller than measured
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Time Evolution of Field Emitted Electrons

XBand Cryo Cavity - Field Emission
Calculation Z.Li 6/28/17
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RF Pump Probe

 We want to investigate how Q, changes after rf input pulse

ends.

— Since field is small, it is difficult to measure the value of Q, in that

region.

* Investigate by creating two rf pulses spaced close together.
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Initial Fit with QO that decreases and then stays

at final value
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Initial Fit with Q0 that decreases and then returns
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Processing History of 1C-SW-A2.75-T2.0-cryo-cu-SLAC-#2
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Breakdown Rate Results

 Breakdown rate vs. gradient and peak surface electric for first rf
breakdowns, 1C-A2.75-T2.0 structures, shaped rf pulse with 150
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Conclusions

* Cryogenic Copper accelerating structures exhibit ultra-high
gradients up to 500 MV/m peak surface electric fields with low
breakdown rates.

— We need to explore the intra-pulse change in Q, further, but
evidence is currently consistent with beam loading due to dark
currents.

— ltis possible that the other mechanisms of rf losses (i.e. resistivity
increase with temperature) are also present, but the strong
dependence of dark current from surface fields, likely dominates.

« We plan to apply this technology to an rf Photoinjector

« Second X-Band Structure to be tested in the coming months
— Gradient Dependence of breakdown rate
— Temperature dependence

» We are designing a cryostat for a S-band high gradient test
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Reusable coupler: TMy, Mode Launcher

Pearson’s RF flange

Cutaway view of the mode launcher Two mode launchers

Surface electric fields in the mode launcher
E_..=49 MV/m for 100 MW

max




RF Surface Resistance Decreases

+ As the mean free path approaches ~ **“f T T T T
the skin depth in magnitude Ohm’s 2010 foet”
law no longer holds. _ 0.008} :

— Boltzmann’s equation can be % 0.006 .
numerically integrated. = 0.004f Normal Skin -

« Inthe limit I > & the surface - Fffect
resistance approaches a limit . ]

PR T AN SN TR SN NN N SN S SR IS SO S
independent of conductivity. 0 5 100 150 200 250

TIK
— Does not depend on the purity or RRR "
of the copper.

—(\/?mw T 4 0v/3)

ne?
* Less rf power is required, and less rf pulse heating is created, for a
given accelerating gradient.

Comparison of surface resistance in NSE and ASE
cases. f=2.856 GHz, o.__=7.42 x 10° S/m, RRR=400

room
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Geometrical Studies
Three Single-Cell-SW Structures of Different Geometries

1)1C-SW-A2.75-T2.0-Cu

3) 1C-SW-A5.65-T4.6-Cu
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Standing-wave structures with different iris diameters: a/A =0.215, a/A =0.143,
and a/A =0.105.
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Geometry and material properties plays a major role in determining the
accelerating gradient and breakdown performance:
Local electric field seems to have less importance than magnetic field

Consequences :
* New geometries optimized for low pulse heating
* Experiments that uncouple rf electric and magnetic fields

* Dedicated study of pulse heating
eLisa Laurent et al., Experimental study of rf pulsed heating, Phys. Rev. ST Accel. Beams 14, 041001 (2011)
*S. Heikkinen, Study of High Power RF Induced Thermal Fatigue in the High Gradient Accelerating Structures,
Ph.D. thesis, Helsinki University of Technology, Finland (2008).

* Hard copper allows resistant to pulse heating damage
e Clad materials

e Cryo-experiments with normal conducting structures
* Methods of building structures without extreme heat treatment




Structures that have different ratio between peak Poynting
vector and peak H”2

1C-SW-A3.75-T2.6-1WR90-Cu 1C-SW-A3.75-T2.6-Cu 1C-SW-A3.75-T2.2-Cu

Max. Poyning Vector Max. Poyning Vector Max. Poyning Vector
1.93 e14 W/m~2 | 1.73 e14 W/m~2 2.4e14 M/m"2

Max. |H"2| 6.4el11 (A/m)"2 Max. |HA2| 4.44e11 (A/m)A2 Max. |HA2| 3.8e11 (A/m)A2

Ratio is 301 Ohm Ratio is 390 Ohm Ratio is 632 Ohm

BI ‘ h NATIONAL

ACCELERATOR

qhﬂ‘ LABORATORY



H
© B
: o)

Breakdown Probability [1/pulse/meter]
|_\
o

[ = S T S
o o o o o
4 5 ) AW

E T T T T ‘ T T T T
L Optimized shape

Pulse heating vs. Poynting vector

Comparison of two on-axis coupled structures and one side-coupled structure
of 3.75 mm aperture, shaped pulse with 200 ns flat part

on axis
coupled

Elliptical iris,
side-coupled

\ Elliptical iris,

on-axis coupled

50 75 100 125
Peak Pulse Heating [deg. C]

0 25

150

e =

[
e 9 ©
N [ o

Breakdown Probability [1/pulse/meter]
'_\
o

< 30 MW/mm? - (200ns)/2

e

] 7 Optimized shape, ——
- on axis coupled

~. Elliptical iris, :
side-coupled

Elliptical iris, ]
on-axis coupled -

0

PU

10000 20000 30000 40000 50000

For structures of significantly different geometries
breakdown rate better correlated more with peak
Poynting vector than with peak surface pulse heating.

Ise Heating *(MaxSc/MaxH”"2) [deg.C*Ohm ]
BI ‘ﬁ MNATIONAL

= @ ACCELERATOR

Db ™A | /50RATORY



Copper is Harder at Cryogenic Temperatures

TEMPERATURE, °F
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Beadpull of 1C-SW-T2.75-A2.0-Cryo-Cu-#2
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* The increase in Q, with
temperature varies
between the three
modes (0, m, 11/2) of the
Cryo Cavity.

We hypothesize this is
due to damage during or
after high power
experiments: the T mode
has highest field in
center cell and has

lowest Q,, /2 has nearly

no field in center cell and
has the highest Q,
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Example Pulse From Breakdown Rate Test

Shaped pulse with 150 ns flat part. Cavity temperature is 45 K.

Average power during flat part of the pulse: 7.6 MW.

Qo decreases from 30,400 to 19,700.

Accelerating Gradient: 247 MV/m for linear model and 237 MV/m for model with
dynamically changing Qo.
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