Americas Workshop on Linear Colliders

Test Stands for Breakdown Studies on RF-Driven and Beam-Driven Structures*

Y. Jiang¹, S.V. Shchelkunov^{1,2}, X.Chang¹, and J.L. Hirshfield^{1,2}

¹ Beam Physics Laboratory, Yale University, New Haven, CT 06511 (USA) ² Omega-P R&D, Inc. New Haven, CT 06511 (USA)

*Research sponsored in part by US Department of Energy & US National Science Foundation.

Outline

<u>TWO TEST STANDS</u>: One RF-driven and one beam-driven.

Two Frequency Test Stand f + 2f: S-band + C-band phased -synchronized RF source Beam Driven Accelerator Test Stand: X-band long bunch train source ($\sim 10^4$ bunches/pulse) **MOTIVATION:** *Trying to avert RF breakdown at high gradients.* Bimodal <u>RF-driven</u> cavity structures (possibly leading to a bimodal linac) Bimodal RF-driven electron gun injector (a near-term application of a bimodal cavity structure) Bimodal <u>beam-driven</u> detuned cavity structures (possibly leading to a bimodal two-beam accelerator)

Two bimodal mechanisms may enable breakdown suppression at high gradients: our planned tests are to confirm this prediction.

Accelerator Moore's Law

Bimodal Mechanism I: Suppress Field Emission

potential energy of an electron near metal surface

Bimodal Mechanism II: Suppress Surface Pulsed Heating

 $E_{total} = (1 - \alpha)E_1 + \alpha E_2$

$$H_{total} = (1 - \alpha)H_1 + \alpha H_2$$

E₁, **E**₂ normalized to the same acceleration gradient

 α is the percentage of the 2nd mode

$$\Delta T \propto (1 - \alpha)^2 < H_1^2 > + \alpha^2 \sqrt{f_2/f_1} < H_2^2 >$$
$$= < H_1^2 > [(1 - \alpha)^2 + \alpha^2 \eta^2]$$

where
$$\eta = \sqrt{(f_2/f_1)^{1/2}} < H_2^2 > / < H_1^2 >$$

"Quadratic Dependence" Effect $\exists \alpha \quad (1-\alpha)^2 + \alpha^2 \eta^2 < 1$

Also, modified Poynting vector S_c and total RF power P_{total} are reduced.

Two harmonic mode superposition could suppress pulsed heating, also believe to be a precursor to breakdown.

Two Test Stands At Yale Under Construction

Two Frequency RF Source for RF Driven Bimodal Structure Experiments

Long Bunch Train Beam Source for Beam Driven Experiments

Two Frequency RF Source

Installation of Output Cavity

After cold tests and brazing

Drive Cavity

Magnetic System

Currently under conditioning

Design & Machining of C-band Hybrid courtesy of SINAP

S11

S21

S31

S41

Current Status: Machined. Cold Test Now

Bandwidth: at least 30MHz

Phase different between Port2 and Port3: 90.003°

First Planned Experiments on Test Stand

RF Breakdown and Pulsed Heating Experiments (2017-2018)

- Asymmetric Bimodal Cavity: Test Anode-Cathode Effect
- *Symmetric* Bimodal Cavity: Test Surface Pulse Heating Effect

Bimodal Electron Gun Experiments (2018-2019)

RF Properties of Asymmetric Anode-Cathode Cavity

TM ₀₁₀ +TM ₀₂₀ Cavity	TM ₀₁₀ 2.856 GH	z T	TM ₀₂₀ 5.712 GHz		
Z	E	н	E		
required RF power	1 st harmonic alone	2 nd harmonic alone	both modes		
frequency (GHz)	2.856	5.712	66% f ₁ and 34% f ₂		
P (MW) for E _{surf} = 100 MV/m	3.49	1.98	1.75		
P (MW) for E _{surf} = 200 MV/m	13.97	7.92	7.21		
P (MW) for E _{surf} = 300 MV/m	31.43	17.82	16.23		

E-field distribution along cavity periphery S

peak surface E-field with 18 MW klystron power

RF/Engineering Design of Anode-Cathode Cavity

Symmetric Bimodal Cavity for Pulsed Heating Suppression

TM₀₁₀+**TM**₀₁₁ (**f** + **2f**) **Quadratic Dependence Effect**

12 GHz

TM₀₁₁ 24 GHz

Pulsed temperature rise

modified Poynting vector S_c

surface E-field along periphery

2-mode superposition compared to fundamental mode alone in the same MHC :

 □ pulsed heating temperature ↓32%
 □ total required RF power ↓ 27%
 □ effective shunt impedance ↑ 37%

Symmetric Bimodal Cavity Structure

Bimodal Electron Gun Experiment

Superposition of microwaves at two frequencies — the first and second harmonic — in RF gun to increase acceleration gradient and improve beam quality

Experimental Setup at Yale BPL

Design of Bimodal Electron Gun

Simulation of Bimodal Electron Gun

1.3 GHz + 2.6 GHz initial: charge 1 nC, beam size σ_x =1mm, pulse length L_t=20 ps, rise time rt=2 ps, intrinsic emittance ε_{therm} = 1.23 π µm

Simulation Results: Beam energy 3.74 MeV, beam size $\sigma_{x,min}$ =0.28mm, normalized emittance $\varepsilon_{x,min}$ = 1.62 π mm mrad, energy spread Δ E/E = 1.9%, P₁=2.2 MW, P₂ =1.7 MW, B_{z,max}=0.16 T.

BIMODAL ELECTRON GUN with Boost Linac

Two Frequency Boost Linac

-2

-1

0

x (mm)

2

-3

-2

-1

0

x (mm)

2

3

Two Frequency Fish Plot

Simulation Results:

Beam energy 39.6 MeV Norm. emit. $\varepsilon_x = 1.8 \pi$ mm mrad Norm. emit. $\varepsilon_z = 37.6 \pi$ keV mrad Energy spread $\Delta E/E = 0.082\%$

Bimodal Cavity for Pulsed Heating Suppression

2-mode superposition compared to fundamental mode alone in the same MHC :

◊ pulsed heating temperature ↓22
◊ peak surface E-field ↓19.4%
◊ total RF power ↓ 19%

◊ effect shunt impedance ↑23%
◊ modified Poynting vector ↓30%

RF Driven Bimodal Cavity with Pulsed Heating Suppressed

RF Driven: Output Cavity of the Two-Frequency RF Source could be changed to third harmonic => f + 3f - or tested with beam drive.

Beam Driven Accelerator Test Stand

eV

6.96e5

5.79e5

4.93e5

3.Q2e5

Beam Driven Accelerator Test Stand

- **Long bunch train (1 μs, X-band)**
- High current (up to 220 A DC)
- □ High charge per bunch

Can provide beam excitation of

test structure to steady state

Detuned Cavity Two-Beam Acceleration & RF Breakdown Test of Bimodal Cavity

Electron Gun 500kV 220 A

Gun Filament ON

Solid State Marx Modulator 500kV 250 A 1.8 µs 20 Hz

Plottype Energy Sample (2/1000)

Detuned-Cavity Two-Beam Accelerator

Planned experiment using Beam Driven Accelerator Test Stand: Detuned-Cavity Two-Beam Accelerator

Alternative Detuning Counter-propagate

"High-gradient two-beam accelerator structure", S. Yu Kazakov, S.V. Kuzikov, Y. Jiang, and J. L. Hirshfield, PRSTAB 13, 071303 (2010)

Klystron-like Bunching Scheme

Low Drive Power Requirement, Very High Current, Full Phase Acceptance => can use Boost Linac (future) to freeze bunch structure.

X-band Klystron using Magnicon Gun (AJDisk) - use high efficiency klystron design concept 500 kV, 218 A, Drive 100 W, Output 64 MW, Gain 58 dB, Efficiency 60%, Cavity Chain 40 cm

Bimodal TBA using BDA Test Stand

Issue: Low Energy Drive Beam (without Boost Linac) can be reflected by high field Solution:

add a two-frequency output cavity and couple to test cavity (until Boost Linac available)

Future BDA Test Stand Upgrade and Tests

Bimodal TBA Structure Test

- Introduce boost linac to freeze bunch structure
- > Add test beam source to direct measure transformer ratio and acceleration gradient

Beam Driven Dielectric Wakefield Accelerators

High Efficiency Klystron Development: ILC MBK

Design Omega-P, Inc.

Assembly CCR

Initial Test

Scheduled to Further Test at SLAC

H Bar Units Base

V Bar Units

Seconds

Function

H Bars

Mode

Ind

Design Values COMPACT six-be	eamlet quadrant, 54" high	gun voltage 1	leic Run T	1 hòri:	zontal di		5 µs Cursor Function Off
HIGH-POWER	2.5 MW, 50 dB gain	output power 4	4		+++ ++++ +++++++++++++++++++++++++++++		H Bars
HIGH EFFICIENCY	~65%	beam current 2	2> <mark>Ch1=5.</mark> Ch3=50	**************************************	12.00 %	- CM1	Bring Selected Cursor To Center Scre Bring Both Cursors O Screen

Depressed Collector FOR ILC MBK

Partially-Grounded Depressed Collector

■Steep B-field gradient and space charge forces →transverse deflection and trapping electrons

Grounded section absorbing otherwise reflected low-energy electrons

❑High energy recovery efficiency : Increase from intrinsic tube efficiency 65% towards 75~80%

Collector Rework

Summary

• Use of bimodal cavities is predicted to reduce breakdown probability, for a given acceleration gradient, *via*

Anode-cathode effect to suppress field emission; and/or Quadratic effect to also suppress pulsed heating.

- Concept can apply to a linac comprising bimodal cavities, with external twofrequency rf drive; or
- Concept can apply to a beam-driven two-beam accelerator arrangement, using detuned bimodal cavities.
- Virtues include increased shunt impedance, reduced rf power, reduced effective poynting vector, and high transformer ratio (for detuned cavities).
- Experiments to confirm rf-driven and beam-driven approaches to suppress beakdown are progressing, all be it slowly.
- A half-cell rf gun design using a bimodal cavity has evolved with predicted performance that is competitive to a conventional 1-1/2 cell gun.
- Parallel efforts in high efficiency klystron development
- LOTS OF WORK REMAINS!!

Acknowledgements

Yale University

SINAP SINAP 中國科学院上海友副物理研究系 Shanghai Institute of Applied Physics, Chinese Academy of Science

http://bpl.yale.edu

Omega-P R&D, Inc.

Beam Physics Lab, Yale University

Prof. Jay Hirshfield

Dr. Sergey Shchelkunov

Dr. Yong Jiang

Dr. Xiangyun Chang

Postdoc Position Open

BACKUP SLIDES

Two Frequency Tuning of Bimodal Cavity

Anode-Cathode Cavity

Symmetric Bimodal Cavity

TM₀₁₀+TM₀₁₁ Cavity

a/λ=0.12 π mode						
standing wave	TM ₀₁₀₊ TM ₀₁₁ Bimodal Cavity			Pillbox A	Pillbox B	Nose-cone
effective	1 st	2 nd	700/ 45	1 st	1 st	1 st
gradient	harmonic	harmonic	/8% 1 st +22% 2 nd	harmonic	harmonic	harmonic
<i>E_{acc}</i> =100MV/m	alone	alone		only	only	only
frequency (GHz)	11.9942	23.9884		11.9942	11.9942	11.9942
effective shunt impedance (MΩ/m)	95.7	38.3	▲ 131.4	89.7	99.1	113.9
transit time factor	0.765	0.786		0.768	0.753	0.758
max E _{surf} (MV/m)	246.8	367.4	246.8	209.7	246.8	225.0
max H _{surf} (MA/m)	0.327	0.634	0.350	0.327	0.298	0.289
max S _c (W/μm²)	2.45	10.3	▼1.95	3.75	3.02	4.20
max <i>∆T</i> (K) @ 200ns pulse length	27.5	148.2	▼18.6	27.5	22.87	21.5
wall loss (MW)	1.306	3.263	▼0.95	1.392	1.262	1.097

2-mode superposition compared to fundamental mode alone in the same MHC :

- pulsed heating temperature \$\sqrt{32}\$
- \Box total required RF power \downarrow 27%

□ maximum modified Poynting vector $S_c ↓ 20\%$ □ effective shunt impedance ↑ 37%

TM₀₁₀+TM₀₁₂ Cavity

a/λ=0.10 π mode standing wave	TM _{010 +} TM ₀₁₂ Bimodal Cavity			Pillbox A	Pillbox B	Nose-cone
effective gradient E_{acc} =100 MV/m	1 st harmonic alone	3 rd harmonic alone	84% 1 st +16% 3 rd	1 st harmonic only	1 st harmonic only	1 st harmonic only
frequency (GHz)	11.9942	35.9826		11.9942	11.9942	11.9942
effective shunt impedance (MΩ/m)	100.73	24.65	124.19	100.43	99.18	127.7
transit time factor	0.753	0.633		0.762	0.758	0.749
max E _{surf} (MV/m)	209.8	359.2	178.0	206.7	178.0	218.6
max H _{surf} (MA/m)	0.309	0.776	0.339	0.309	0.309	0.267
max S _c (W/μm²)	2.365	9.700	▼ 1.670	3.190	3.181	3.68
max ΔT (K) @ 200ns pulse length	24.46	261.8	▼ 19.15	24.46	24.46	17.65
wall loss (MW)	1.241	5.069	▼1.006	1.244	1.260	0.979

	Bimodal (16%)	Nose-cone	
effective gradient E _a	150	150	MV/m
effective shunt	12/1 2	127 7	MO/m
impedance	127.2	127.7	11122/111
max E _{surf}	267	327.9	MV/m
max H _{surf}	0.509	0.401	MA/m
max S _c	3.76	8.28	W/µm²
max ΔT @	43.1	39 7	ĸ
200ns pulse length	43.1	33.7	IX I
wall loss	2.26	2.20	MW
	effective gradient <i>E_a</i> effective shunt impedance max <i>E</i> _{surf} max <i>H</i> _{surf} max S _c max ΔT @ 200ns pulse length wall loss	Bimodal (16%)effective gradient E_a 150effective shunt impedance124.2max E_{surf} 267max H_{surf} 0.509max ΔT @3.76Max ΔT @43.1200ns pulse length wall loss2.26	Bimodal (16%)Nose-coneeffective gradient Ea150150effective shunt124.2127.7impedance267327.9max Esurf0.5090.401max Sc3.768.28max ΔT @43.139.7200ns pulse length2.262.20

Circuit Model for Collinear Two Beam Accelerator

