

Sometimes I drive recklessly, just to kill off close copies of me in the multiverse.

SUSY Predictions for ILC and CLIC

Sven Heinemeyer, IFT/IFCA (CSIC, Madrid/Santander)

SLAC, 06/2017

- 1. Introduction
- 2. The MasterCode
- 3. SUSY Fit Results for the ILC and CLIC
- 4. New Theory Predictions for the ILC and CLIC
- 5. Conclusions

1. Introduction

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

<u>1. Introduction</u>

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

<u>1. Introduction</u>

Some "recent" measurements:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

Simple SUSY models predicted correctly:

- top quark mass
- Higgs boson mass
- Higgs boson "couplings"
- Dark Matter (properties)

\Rightarrow good motivation to look at SUSY!

The Minimal Supersymmetric Standard Model (MSSM)

Superpartners for Standard Model particles

Problem in the MSSM: more than 100 free parameters

Nobody(?) believes that a model describing nature has so many free parameters!

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu$

 $\begin{array}{c} m_0: \text{universal scalar mass parameter} \\ m_{1/2}: \text{universal gaugino mass parameter} \\ A_0: \text{universal trilinear coupling} \\ \tan\beta: \text{ratio of Higgs vacuum expectation values} \\ \text{sign}(\mu): \text{sign of supersymmetric Higgs parameter} \end{array}$

⇒ particle spectra from renormalization group running to weak scale ⇒ Lightest SUSY particle (LSP) is the lightest neutralino \Rightarrow DM! GUT based models: 1.) CMSSM (sometimes wrongly called mSUGRA):

 \Rightarrow particle spectra from renormalization group running to weak scale

 \Rightarrow one parameter turns negative \Rightarrow Higgs mechanism for free

"Typical" CMSSM scenario

(SPS 1a benchmark scenario):

Strong connection between

all the sectors

GUT based models: 2.) NUHM1: (Non-universal Higgs mass model)

Assumption: no unification of scalar fermion and scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A as free parameters at the EW scale

 \Rightarrow Scenario characterized by

 $m_0, m_{1/2}, A_0, \tan\beta, \operatorname{sign}\mu \text{ and } M_A$

GUT based models: 3.) NUHM2: (Non-universal Higgs mass model 2)

Assumption: no unification of scalar Higgs parameter at the GUT scale

 \Rightarrow effectively M_A and μ as free parameters at the EW scale

 \Rightarrow Scenario characterized by

 $m_0, m_{1/2}, A_0, \tan\beta, \mu \text{ and } M_A$

Assumption I:

no unification of scalar Higgs parameter at the GUT scale

(\Rightarrow effectively M_A and μ as free parameters at the EW scale)

Assumption II:

$$(q_L, u_L^c, e_L^c)_i \in \mathbf{10}_i, \ (\ell_L, d_L^c)_i \in \mathbf{\overline{5}}_i$$

 \Rightarrow Scenario characterized by

 $m_5, m_{10}, m_{1/2}, A_0, \tan\beta, m_{H_u}, m_{H_d}$

GUT based models: 5.) mAMSB:

mAMSB scenario characterized by

 $m_{3/2}, m_0, \tan\beta, \operatorname{sign}(\mu)$

 $m_{3/2} = \langle F \rangle / M_{\text{Planck}}$: overall scale of SUSY particle masses

 m_0 : phenomenological parameter: universal scalar mass term introduced in order to keep squares of slepton masses positive

typical feature: very small neutralino–chargino mass difference $\Rightarrow \tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 + \pi^{\pm}$ with very soft pions

Problem: We cannot be sure about the SUSY-breaking mechanism

- ⇒ it is possible that with the CMSSM, NUHM1, NUHM2, SU(5), mAMSB we missed the "correct" mechanism
- ⇒ hint: strong connection between colored and uncolored sector tension between low-energy EW effects and (colored) LHC searches

Problem: We cannot be sure about the SUSY-breaking mechanism

- \Rightarrow it is possible that with the CMSSM, NUHM1, NUHM2, SU(5), mAMSB we missed the "correct" mechanism
- ⇒ hint: strong connection between colored and uncolored sector tension between low-energy EW effects and (colored) LHC searches

Solution: investigate also the "general MSSM"

 \Rightarrow 10 parameters are manageable \Rightarrow pMSSM10

- squark mass parameters: $m_{\tilde{q}_{1,2}} =: m_{\tilde{q}}, m_{\tilde{q}_3}$
- slepton mass parameter: $m_{\tilde{l}}$
- gaugino masses: M_1 , M_2 , M_3
- trilinear coupling: A
- Higgs sector parameters: M_A , tan β
- Higgs mixing paramter: μ

⇒ collaborative effort of theorists and experimentalists
 [Bagnaschi, Borsato, Buchmüller, Cavanaugh, Chobanova, Citron, Costa,
 De Roeck, Dolan, Ellis, Flächer, SH, Isidori, Liu, Lucio, Martinez Santos, Olive,
 Richards, Sakurai, Weiglein]

Über-code for the combination of different tools:

- Über-code original in Fortran, now re-written in C++
- tools are included as subroutines
- compatibility ensured by collaboration of authors of "MasterCode" and authors of "sub tools" /SLHA(2)
- sub-codes in Fortran or C++
- \Rightarrow evaluate observables of one parameter point consistently with various tools

cern.ch/mastercode

- Higgs boson mass/couplings/...(LHC) \Rightarrow FeynHiggs

- Higgs boson mass/couplings/...(LHC) \Rightarrow FeynHiggs
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals

- Higgs boson mass/couplings/...(LHC) \Rightarrow FeynHiggs
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds

- Higgs boson mass/couplings/...(LHC) \Rightarrow FeynHiggs
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC) \Rightarrow own re-cast

- Higgs boson mass/couplings/...(LHC) \Rightarrow FeynHiggs
- Higgs boson signal strengths (LHC) \Rightarrow HiggsSignals
- Higgs boson exclusion bounds (LHC, Tevatron, LEP) \Rightarrow HiggsBounds
- SUSY searches (LHC) \Rightarrow own re-cast

- electroweak precision data \Rightarrow FeynWZ, FeynHiggs
- flavor data \Rightarrow SuperIso, SuFla
- astrophysical data (DM properties) \Rightarrow MicrOMEGAs, SSARD

3. Predictions for the ILC and CLIC

 m_0 - $m_{1/2}$ plane including LHC 20/fb:

NUHM1

[2013]

CMSSM

LSP mass incl. 20/fb of LHC data

 \Rightarrow only very large values are favored

CMSSM best-fit point prediction

CMSSM best-fit point prediction

NUHM1 best-fit point prediction

Sven Heinemeyer – AWLC 17, SLAC, 29.06.2017

NUHM1 best-fit point prediction

NUHM2 best-fit point prediction

Sven Heinemeyer – AWLC 17, SLAC, 29.06.2017

NUHM2 best-fit point prediction

Results in the SU(5)

Dark Matter annihilation mechanism:

[2016]

 $\Rightarrow \tilde{u}_R/\tilde{c}_R/\tilde{\nu}_{\tau}$ co-ann. possible \Rightarrow but $\tilde{\tau}_1$ co-ann. dominant!

SU(5) prediction: best-fit masses

 \Rightarrow high colored masses

 \Rightarrow lower electroweak masses

partially with not too large 1σ ranges

 \Rightarrow clear prediction for ILC and CLIC

SU(5) prediction: best-fit masses

ILC: $\sqrt{s} = 1000 \text{ GeV} \Rightarrow \text{only few EW particles possibly accessible}$

CLIC: $\sqrt{s} = 3000 \text{ GeV} \Rightarrow \text{pair production of many SUSY particles "likely"}$ \Rightarrow no access to colored particles

Results in the mAMSB

Dark Matter composition:

[2016]

Results in the mAMSB

Dark Matter composition:

 \Rightarrow very relaxed limits \Rightarrow lower masses

mas Tercore

[2016]

- \Rightarrow high colored masses
- \Rightarrow lower electroweak masses

partially with not too large 1 σ ranges

 \Rightarrow clear prediction for ILC and CLIC

ILC: $\sqrt{s} = 1000 \text{ GeV} \Rightarrow \text{bad prospects}$

CLIC: $\sqrt{s} = 3000 \text{ GeV} \Rightarrow \text{pair production of few SUSY particles "likely"}$ \Rightarrow no access to colored particles

mAMSB prediction: best-fit masses (higgsino)

[2016]

 \tilde{H} -LSP for $\mu > 0$, $\Omega_{\tilde{\chi}_1^0} < \Omega_{\rm CDM}$

- \Rightarrow high colored masses
- \Rightarrow some(!) lower electroweak masses partially with not too large 2 σ ranges
- \Rightarrow clear prediction for ILC and CLIC

mAMSB prediction: best-fit masses (higgsino)

 \hat{H} -LSP for $\mu > 0$, $\Omega_{\tilde{\chi}_1^0} < \Omega_{\rm CDM}$

ILC: $\sqrt{s} = 1000 \text{ GeV} \Rightarrow \text{few EW particles possibly accessible}$

CLIC: $\sqrt{s} = 3000 \text{ GeV} \Rightarrow \text{pair production of few SUSY particles}$ "guraranteed" \Rightarrow no access to colored particles

Problem: We cannot be sure about the SUSY-breaking mechanism

- \Rightarrow it is possible that with the CMSSM, NUHM1, NUHM2, SU(5), mAMSB we missed the "correct" mechanism
- ⇒ hint: strong connection between colored and uncolored sector tension between low-energy EW effects and (colored) LHC searches

Solution: investigate also the "general MSSM"

 \Rightarrow 10 parameters are manageable \Rightarrow pMSSM10

- squark mass parameters: $m_{\tilde{q}_{1,2}} =: m_{\tilde{q}}, m_{\tilde{q}_3}$
- slepton mass parameter: $m_{\tilde{l}}$
- gaugino masses: M_1 , M_2 , M_3
- trilinear coupling: A
- Higgs sector parameters: M_A , tan β
- Higgs mixing paramter: μ

 \Rightarrow pMSSM10 predicts much lower LSP mass than GUT-based models

[2015]

pMSSM10 prediction: best-fit masses

- \Rightarrow high colored masses
- ⇒ relatively low electroweak masses partially with not too large ranges
- \Rightarrow clear prediction for ILC and CLIC

pMSSM10 prediction: best-fit masses

ILC: $\sqrt{s} = 1000 \text{ GeV} \Rightarrow \text{pair production of many SUSY particles possible}$

CLIC: $\sqrt{s} = 3000 \text{ GeV} \Rightarrow \text{pair production of many SUSY particles likely}$ \Rightarrow some colored particles possible

 \Rightarrow GUT based models: ILC :-(, CLIC possible \Rightarrow pMSSM10: easy at the ILC

 \Rightarrow GUT based models: ILC :-(, CLIC possible \Rightarrow pMSSM10: easy at the ILC - but no real upper limit

 \Rightarrow GUT based models: ILC :-(, CLIC possible \Rightarrow pMSSM10: good at the ILC - but no real upper limit

 \Rightarrow GUT based models: ILC :-(, CLIC possible \Rightarrow pMSSM10: easy at the ILC - but no real upper limit

What to conclude?

What to conclude? \Rightarrow Look at the *p* values!

What to conclude?

\Rightarrow Look at the p values!

Model	Min. χ^2 /dof	χ^2 -prob. (<i>p</i> -value)
CMSSM	32.8/18	11%
NUHM1	31.1/23	12%
NUHM2	30.3/22	11%
SU(5)	32.4/23	9%
mAMSB	36.5/27	11%
pMSSM10	20.5/18	31%

Which model is more likely??

What to conclude? \Rightarrow Look at the *p* values!

Model	Min. χ^2 /dof	χ^2 -prob. (<i>p</i> -value)
CMSSM	32.8/18	11%
NUHM1	31.1/23	12%
NUHM2	30.3/22	11%
SU(5)	32.4/23	9%
mAMSB	36.5/27	11%
pMSSM10	20.5/18	31%

Which model is more likely?? \Rightarrow pMSSM10: model with higher χ^2 -probability model with interesting ILC prospects model with good CLIC prospects

What to conclude? \Rightarrow Look at the *p* values!

Model	Min. χ^2 /dof	χ^2 -prob. (<i>p</i> -value)			
CMSSM	32.8/18	11%			
NUHM1	31.1/23	12%			
NUHM2	30.3/22	11%			
SU(5)	32.4/23	9%			
mAMSB	36.5/27	11%			
pMSSM10	20.5/18	31%			

Which model is more likely??

⇒ pMSSM10: model with higher χ^2 -probability model with interesting ILC prospects model with good CLIC prospects

 \Rightarrow Are we ready (from the TH side) for EW particle production?

4. New Theory Predictions for the ILC and CLIC

Extensive program for SUSY production and decay:

- [S.H., C. Schappacher et al. 08'-17']
- full one-loop
- real and complex parameters
- soft and hard (and collinear) QED/QCD radiation
- renormalization (finally) fully under control

- stop/sbottom/stau decays
- gluino/chargino/neutralino decays
- Higgs decays
- Higgs production $(2\rightarrow2)$
- chargino/neutralino production

+ soft and hard QED radiation

cMSSM parameters:

Scen.	\sqrt{s}	t_{eta}	μ	$M_{H^{\pm}}$	$M_{\tilde{Q},\tilde{U},\tilde{D}}$	$M_{\tilde{L},\tilde{E}}$	$ A_t $	A_b	A_{τ}	$ M_1 $	M_2	M_3
S	1000	10	450	500	1500	1500	2000	$ A_t $	$M_{\tilde{L}}$	$\mu/4$	$\mu/2$	2000
				$m_{\tilde{\chi}_1^\pm}$	$m_{\tilde{\chi}_2^{\pm}}$	$m_{ ilde{\chi}_1^0}$	1	$m_{ ilde{\chi}^0_2}$	$m_{ ilde{\chi}}$	03	$m_{ ilde{\chi}^0_4}$	
	tree		21	2.760	469.874	110.434	213.	.002	455.16	2 469	9.226	
	CCN [1]	21	2.760	469.874	110.434	212.	850	455.19	5 469	9.560	

with \sqrt{s} , $M_{H^{\pm}}$, $\tan\beta$, $M_{\tilde{L}}$, φ_{M_1} varied

- Scenario chosen such that many processes are possible at the same time
- not chosen to maximize loop corrections

\Rightarrow few example plots

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$:

\Rightarrow loop corrections crucial!

 $e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$:

 $\Rightarrow M_1$ phase dependence large, loop corrections crucial!

 $e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0$:

 \Rightarrow loop corrections depend strongly on \sqrt{s}

 $e^+e^- \rightarrow \tilde{\chi}^0_3 \tilde{\chi}^0_3$:

 \Rightarrow polarization could be crucial for some processes!

5. Conclusinos

- SUSY is (still) the best-motivated BSM scenario
 - constrained models: CMSSM, NUHM1, NUHM2, SU(5), mAMSB
 - general models: pMSSM10, ...
 ⇒ other variants possible! Not (yet) analyzed!
- Our tool: MasterCode \Rightarrow combination of LHC searches, Higgs measurements, EWPO, BPO, CDM $\Rightarrow \chi^2$ evaluation
- Fit results in CMSSM, NUHM1, NUHM2, pMSSM10:

Particle	CMSSM/NUHM1/NUHM2	pMSSM10
gauginos	ILC CLIC	ILC CLIC
sleptons	CLIC	ILC CLIC
stops/sbottoms		CLIC
other		

 χ^2 -probabilities: CMSSM/NUHM1/NUHM2 = 11%, pMSSM10 = 31%

• SUSY production cross section: chargino/neutralino ready

Further Questions?

Higgs rate measurements: Implemented via HiggsSignals

(Some) Electroweak precision observables in the MasterCode

- (\rightarrow as for blue band analysis, except ${\sf \Gamma}_W)$
- 1. M_W (LEP/Tevatron)
- 2. A^e_{LR} (SLD)
- 3. A^b_{FB} (LEP)
- 4. A_{FB}^c (LEP)
- 5. A_{FB}^l
- 6. A_b, A_c
- 7. R_b, R_c
- 8. σ_{had}^0

\Rightarrow largest impact: (1), (2), (3)

(Some) B/K physics observables in the MasterCode

- 1. $BR(b \rightarrow s\gamma)$ (MSSM/SM)
- 2. BR($B_s \rightarrow \mu^+ \mu^-$)
- **3**. Δ*M*_s
- 4. $R(\Delta M_s/\Delta M_d)$
- 5. $BR(B_u \rightarrow \tau \nu_{\tau})$ (MSSM/SM)
- 6. BR($B \to X_x \ell^+ \ell^-$)
- 7. $BR(K \rightarrow \ell \nu)$ (MSSM/SM)
- 8. BR(ΔM_K) (MSSM/SM)
- \Rightarrow largest impact: (1) and (2)

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: α_{eff} , especially for $\sin^2(\beta \alpha_{eff})$

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: $\alpha_{\rm eff}$, especially for $\sin^2(\beta \alpha_{\rm eff})$

Dark Matter observables in the MasterCode

- CDM density: $\Omega_{\chi}h^2$
- Direct detection cross section: σ_p^{SI} (prediction; not incl. in the fit yet)

– anomalous magnetic moment of the muon: $(g-2)_{\mu}$

Higgs physics observables in the MasterCode

- lightest Higgs mass: M_h
- effective mixing angle: $\alpha_{\rm eff}$, especially for $\sin^2(\beta \alpha_{\rm eff})$

Dark Matter observables in the MasterCode

- CDM density: $\Omega_{\chi}h^2$
- Direct detection cross section: σ_p^{SI} (prediction; not incl. in the fit yet)

SM parameters

- top mass: m_t
- -Z boson mass: M_Z
- hadronic contribution to fine structure constant: $\Delta \alpha_{had}$