Top electroweak couplings study using di-muonic state at $\sqrt{s}=500 \mathrm{GeV}$, ILC Full ILD detector simulation

ILD Analysis/Software Meeting

Yo Sato ${ }^{A}$

Emi Kou ${ }^{\text {B }}$, Francois Le Diberder ${ }^{\text {B }}$, Hitoshi Yamamoto ${ }^{\text {A }}$
Tohoku University ${ }^{\text {A }}$, LAL B

Top electroweak couplings

The top quark mass is comparable with the electroweak symmetry breaking scale. One can speculate that top quark plays a special role for the EWSB, for example such composite models. Therefore top quark electroweak couplings are good probes for New Physics.

Plot shows the predicted deviations from the Standard model of Z^{0} couplings to t_{L} and t_{R} in composite models

Precision expected at the ILC will allow to distinguish between models. arXiv:1505.06020 [hep-ph]

Matrix element method

The most efficient method when all the kinematics can be reconstructed.

- Results of previous study show that 10 form factors can be fitted simultaneously at less than a percent precision.

Statistical uncertainties and correlation with the SM LO as normalization
Kheim, E.K. Kurihara, Le Diberder: arXiv: I 503:04247
$\left[\begin{array}{cccccccccc}\mathcal{R e} \delta \tilde{F}_{1 V}^{\gamma} & \mathcal{R e} \delta \tilde{F}_{1 V}^{Z} & \mathcal{R e} \delta \tilde{F}_{1 A}^{\gamma} & \mathcal{R e} \delta \tilde{F}_{1 A}^{Z} & \mathcal{R e} \delta \tilde{F}_{2 V}^{\gamma} & \mathcal{R e} \delta \tilde{F}_{2 V}^{Z} & \mathcal{R e} \delta \tilde{F}_{2 A}^{\gamma} & \mathcal{R e} \delta \tilde{F}_{2 A}^{Z} & \mathcal{I} \mathrm{~m} \delta \tilde{F}_{2 A}^{\gamma} & \mathcal{I} \mathrm{m} \delta \tilde{F}_{2 A}^{Z} \\ 0.0037 & -0.18 & -0.09 & +0.14 & +0.62 & -0.15 & 0 & 0 & 0 & 0 \\ & 0.0063 & +.14 & -0.06 & -0.13 & +0.61 & 0 & 0 & 0 & 0 \\ & & 0.0053 & -0.15 & -0.05 & +0.09 & 0 & 0 & 0 & 0 \\ & & & 0.0083 & +0.06 & -0.04 & 0 & 0 & 0 & 0 \\ & & & & 0.0105 & -0.19 & 0 & 0 & 0 & 0 \\ & & & & & 0.0169 & 0 & 0 & 0 & 0 \\ & & & & & & 0.0068 & -0.15 & 0 & 0 \\ & & & & & & 0.0118 & 0 & 0 \\ & & & & & & 0.0069 & -0.17 \\ & & & & & & & 0.0100\end{array}\right]$

Emi Kou (LAL-Orsay) LFC 15, Trento, 7-11 Sep. 2015

This result is at parton level ignoring the detector effect, ISR and so on.
\rightarrow More realistic study is required !

Setting of this study

Sample

The top pair production di-muonic state; $t \bar{t} \rightarrow b \bar{b} \mu^{+} \mu^{-} \nu \bar{v}$ at $\sqrt{s}=500 \mathrm{GeV}$

Situation

\checkmark The hadronization of b and \bar{b} quark
\checkmark The detector effects (= full simulation)
\checkmark ISR and beamsstrahlung
\checkmark Gluon emission from top quark
\checkmark YY \rightarrow hadrons background

sample B =DBD sample
\times Background events

Reconstruction

Process of the reconstruction

- Isolated leptons tagging
- $\gamma Y \rightarrow$ hadrons background suppression
- B-jets reconstruction using the Thrust axis method
- Kinematical reconstruction

Thrust axis method

(1) Collect all hadronized particles in the ILC frame
(2) Boost them into the BB frame and calculate thrust axis
(3) Boost the vectors along the thrust axis into the rest frame of $e^{-} e^{+}$
sample A : use same parameters with (2)
sample B : consider ISR/BS effects \rightarrow introduce the $k_{e^{-}}, k_{e^{+}}$

Considering ISR/BS effects

Collinear approximation:

Photon radiation is assumed to be along the beam lines

$$
\begin{align*}
\vec{e}^{-} & =\hat{\eta}_{e^{-}} E_{e^{-}} \tag{1}\\
\vec{e}^{+} & =\hat{\eta}_{e^{+}} E_{e^{+}} \tag{2}
\end{align*}
$$

with,

$$
\begin{align*}
\hat{\eta}_{e^{-}} & =\left(\sin \theta_{c}, 0, \quad \cos \theta_{c}\right) \tag{3}\\
\hat{\eta}_{e^{+}} & =\left(\sin \theta_{c}, 0,-\cos \theta_{c}\right) \tag{4}\\
E_{e^{ \pm}} & =E=250 \mathrm{GeV} \tag{5}
\end{align*}
$$

where θ_{c} is the beam crossing angle, $\theta_{c}=7 \mathrm{mrad}$.
In this approximation, the directions are not changed but only the energies are changed. Then the electron and positron thre-momenta become:

$$
\begin{array}{ll}
\left(\vec{e}^{-}\right)^{*}=\hat{\eta}_{e^{-}} E_{e^{-}}^{*}=\hat{\eta}_{e^{-}} E\left(1-k_{e^{-}}\right) \quad \text { with } \quad k_{e^{-}}=\frac{E-E_{e^{-}}^{*}}{E} \\
\left(\vec{e}^{+}\right)^{*}=\hat{\eta}_{e^{+}} E_{e^{+}}^{*}=\hat{\eta}_{e^{+}} E\left(1-k_{e^{+}}\right) \quad \text { with } \quad k_{e^{+}}=\frac{E-E_{e^{+}}^{*}}{E} \tag{7}
\end{array}
$$

where $E_{e^{ \pm}}^{*}$ is the energy of electron or positron just before collision.

Distribution of $\cos \theta$ and $\boldsymbol{k}_{\boldsymbol{e}^{-}}$(MC truth)

$\cos \theta$
(θ : angle between e^{-*} and the beam direction)

Beam spread

Kinematical reconstruction

Strategy of the kinematical reconstruction

There are 8 unknown kinematics in this state
(= the momenta of two neutrinos and energy of two b-jets)
and $\left(\boldsymbol{k}_{\boldsymbol{e}^{-}}, \boldsymbol{k}_{\boldsymbol{e}^{+}}\right)$ for sample B

Impose 8 constraints ($=$ initial state constraints and $m_{t}, m_{\bar{E}}, m_{W^{+}}, m_{W^{-}}$)
\rightarrow Solutions are obtained in terms of $\left(\theta_{t}, \phi_{t}\right) \rightarrow\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\right)$
But the equation is nonlinear. Furthermore an ambiguity of b-charge remains.
\rightarrow Typically 4 solutions per event.
Select the optimal solution

Kinematical reconstruction : Results

$k_{e^{-}}$(only sample B)

$$
\phi_{\mu^{+}, \text {rec. }}-\phi_{\mu^{+}, \text {truth }}(\mathbf{A} / \mathbf{B})
$$

■ The k 's are free to vary between 0 and 1 without constraint for now

- Result of sample \mathbf{B} is not that bad comparing with \mathbf{A}
\rightarrow Plan to check if it is enough for the analysis using MEM

Kinematical reconstruction : Results

$k_{e^{-}}$(only sample B)

$$
\phi_{\mu^{+}, \text {rec. }}-\phi_{\mu^{+}, \text {truth }}(\mathbf{A} / \mathbf{B})
$$

Status of the 10 form factors fit (sample A)

$\Delta_{F 1}$	-0.0067 ± 0.0082
$\Delta_{F 2}$	0.035 ± 0.017
$\Delta_{F 3}$	-0.056 ± 0.012
$\Delta_{F 4}$	0.035 ± 0.018
$\Delta_{F 5}$	-0.022 ± 0.026
$\Delta_{F 6}$	0.042 ± 0.045
$\Delta_{F 7}$	-0.0081 ± 0.015
$\Delta_{F 8}$	0.010 ± 0.032
$\Delta_{F 9}$	0.013 ± 0.024
$\Delta_{F 10}$	-0.010 ± 0.022

(Preliminary)

5000 events, after cut on the $\chi_{\text {tot. }}^{2}$ to keep $\sim 83 \%$ of the events without ISR/BS

Some small biases are observed (eg. $\Delta_{F 3}$) at few percent level
\rightarrow No show stopper yet !!!
\rightarrow Use sample B for the matrix element method

Summary \& Plan

Started realistic study using sample B (= DBD sample)

- Accuracy of kinematical reconstruction is not that bad comparing the sample \mathbf{A} (without ISR/BS)
- Seeds issue for the kinematical reconstruction still remains
- Analysis with Matrix element method
- 10 form factors can be fitted at percent precision for sample A
\rightarrow Apply the Matrix element method on sample B

Back up

Kinematical constraints

In the W rest frame, the energy of isolated lepton is equal to $m_{W} / 2$ (with ignoring ISR and bremsstrahlung)

Measurements of b-quark energies

To select a right solution, we can use the measurement of b -jets energy. (Because this figure is at parton level, the χ_{b}^{2} doesn't make sense.)

Miss combination of b-quarks

When we use the anti-b direction for the top reconstruction, the measurements of energy of b-jets excludes this combination.

Comparison Thrust axis method and Jet clustering

The angle between truth direction and reconstructed direction of b quark

Red : Thrust axis method
Blue : Jet clustering (LCFIPlus)

Two methods produce almost same precision for direction of b-quark.
\rightarrow We select the thrust axis method for this study so far.

Assessment of energy of b-jet

Deviation of energy of b-jet
(using thrust axis method)
Red: Original
Blue : Fitted
(Blue is a sum of Pink and Green)

To estimate the b-jet energy resolution we use multiple Crystal Ball functions for fitting.

$$
C B(x \mid \alpha, n, \mu, \sigma)= \begin{cases}N \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right), & \frac{x-\mu}{\sigma}>-\alpha \\ N \cdot A \cdot\left(B-\frac{x-\mu}{\sigma}\right)^{-n}, & \frac{x-\mu}{\sigma}<-\alpha\end{cases}
$$

So far we use $\sigma_{j e t} E_{b}^{K}$ with two parameters $\sigma_{j e t}$ and K for σ.

χ^{2} algorithm : General

1. Define the χ_{μ}^{2};

$$
\chi_{\mu}^{2}=\chi_{\mu^{+}}^{2}+\chi_{\mu^{-}}^{2}, \quad \chi_{\mu^{ \pm}}^{2}=\left(\frac{E_{\mu^{ \pm}}^{* *}\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}} m_{W^{+}}, m_{W^{-}}\right)-m_{W^{ \pm}} / 2}{\sigma\left[E_{\mu^{ \pm}}^{* *}\right]}\right)^{2}
$$

The energy of $\mu^{ \pm}$in the $W^{ \pm}$rest frame, $E_{\mu^{ \pm}}^{* *}$, must be equal to $m_{W^{ \pm}} / 2$.
2. Define the δ_{b}^{2};

$$
\delta_{b}^{2}=-2 \log L_{b}-2 \log L_{\bar{b}}, L_{b}=\operatorname{CB}\left(E_{b}^{\text {meas. }}-E_{b}^{\text {rec. }}\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\right)\right)
$$

The likelihood function is obtained from the assessment of b-jets energy.
3. Compound $\chi_{\text {tot. }}^{2}$; $\chi_{\text {tot. }}^{2}=\chi_{\mu}^{2}+\delta_{b}^{2}$

One minimizes the $\chi_{\text {tot. }}^{2}$ to obtain the optimal solution; $\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}\right)$.

χ^{2} algorithm : Optional

The direction of b-jets is obtained by thrust axis method.
\rightarrow Add 4 angles $\left(\theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$ to the minimization parameters
\rightarrow Add constraints of 4 angles $\left(\theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$ to $\chi_{\text {tot. }}^{2}$ as follows;

$$
\chi_{\text {direction }}^{2}=\chi_{\theta_{b}}^{2}+\chi_{\phi_{b}}^{2}+\chi_{\theta_{\bar{b}}}^{2}
$$

$$
\left(\chi_{\text {tot. }}^{2}\right)^{\prime}=\chi_{\text {tot. }}^{2}+\chi_{\text {direction }}^{2}
$$

We can use $\left(\chi_{\text {tot. }}^{2}\right)^{\prime}$ instead of $\chi_{\text {tot. }}^{2}$ to get the optimal solution, which is written in $\left(\theta_{t}, \phi_{t}, m_{t}, m_{\bar{t}}, m_{W^{+}}, m_{W^{-}}, \theta_{b}, \phi_{b}, \theta_{\bar{b}}, \phi_{\bar{b}}\right)$

Kinematical reconstruction : Results

Reconstructed particles $\rightarrow 9$ helicity angles:

$$
\cos \theta_{t}, \cos \theta_{W^{+}}, \phi_{W^{+}}, \cos \theta_{\mu^{+}}, \phi_{\mu^{+}}, \cos \theta_{W^{-}}, \phi_{W^{-}}, \cos \theta_{\mu^{-}}, \phi_{\mu^{-}}
$$

$(\rightarrow$ Matrix element squared \rightarrow Fit Form Factors)
eg.) $\cos \theta_{t}$

eg.) $\phi_{\mu^{+}, \text {rec. }}-\phi_{\mu^{+}, \text {truth }}$

The ratio of wrong assignment of b-quark is only 2.1 \%! (cf. ~16 \% for the semi-leptonic analysis, Yo Sato Top@LC 2016)

Analysis with Matrix element method

Illustration of analysis : 5000 unpolarized events

- using only $\cos \theta_{t} \bullet$ using the complete set of 9 helicity angles

Number of events not used on purpose to compare the intrinsic power of these two to determine a single form factor, $F_{2 V}^{Z}$.

