Top electroweak couplings study using di-muonic state at $\sqrt{s} = 500$ GeV, ILC Full ILD detector simulation

ILD Analysis/Software Meeting

<u>Yo Sato</u>^A

Emi Kou^B, Francois Le Diberder^B, Hitoshi Yamamoto^A

Tohoku University^A, LAL^B

Top electroweak couplings

The top quark mass is comparable with the electroweak symmetry breaking scale. One can speculate that top quark plays a special role for the EWSB, for example such composite models. <u>Therefore top quark electroweak couplings</u> <u>are good probes for New Physics.</u>

Plot shows the predicted deviations from the Standard model of Z^0 couplings to t_L and t_R in composite models **Precision expected at the ILC will allow to distinguish between models.** arXiv:1505.06020 [hep-ph]

Matrix element method

The most efficient method when all the kinematics can be reconstructed.

- Results of previous study show that 10 form factors can be fitted

simultaneously at less than a percent precision.

Statistical	uncerta	inties a	nd cori	relation	n with t	he SM	LO as	normal	ization	
		Kheim, E.K. Kurihara, Le Diberder: arXiv:1503:04247								
$\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} \\ 0.0037 \end{bmatrix}$	$\begin{array}{c} \mathcal{R}\mathrm{e}\;\delta\tilde{F}^Z_{1V}\\ -0.18\\ 0.0063 \end{array}$	$\begin{array}{c} \mathcal{R}\mathrm{e} \ \delta \tilde{F}_{1A}^{\gamma} \\ -0.09 \\ +.14 \\ 0.0053 \end{array}$	$\begin{array}{c} {\cal R} \mathrm{e} \ \delta \tilde{F}^Z_{1A} \\ +0.14 \\ -0.06 \\ -0.15 \\ 0.0083 \end{array}$	$\begin{array}{c} {\cal R} \mathrm{e} \; \delta \tilde{F}_{2V}^{\gamma} \\ +0.62 \\ -0.13 \\ -0.05 \\ +0.06 \\ 0.0105 \end{array}$	$\begin{array}{c} {\cal R} \mathrm{e} \; \delta \tilde{F}^Z_{2V} \\ -0.15 \\ +0.61 \\ +0.09 \\ -0.04 \\ -0.19 \\ 0.0169 \end{array}$	$\begin{array}{c} \mathcal{R}e \ \delta \tilde{F}_{2A}^{\gamma} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0068 \end{array}$	$\begin{array}{c} {\cal R} \mathrm{e} \; \delta \tilde{F}^Z_{2A} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -0.15 \\ 0.0118 \end{array}$	$\mathcal{I}_{\rm m} \delta \tilde{F}_{2A}^{\gamma} = 0$ 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{bmatrix} {Im} \ \delta \tilde{F}_{2A}^{Z} \\ 0 \\ 0 \\ 0 \\ $	Emi Kou (LAL-Orsay LFC 15, Trento, 7-11 Sep. 2015

This result is at parton level ignoring the detector effect, ISR and so on.

→More realistic study is required !

Setting of this study

Sample

The top pair production di-muonic state;

```
t\bar{t} \rightarrow b\bar{b}\mu^+\mu^-\nu\bar{\nu} at \sqrt{s} = 500 GeV
```

Situation

- ✓ The hadronization of *b* and \overline{b} quark
- ✓ The detector effects (= full simulation)
- ✓ ISR and beamsstrahlung
- ✓ Gluon emission from top quark
- $\checkmark \gamma \gamma \rightarrow$ hadrons background
- × Background events

Reconstruction

Process of the reconstruction

- Isolated leptons tagging
- $\gamma\gamma \rightarrow$ hadrons background suppression
- <u>B-jets reconstruction using the Thrust axis method</u>
- <u>Kinematical reconstruction</u>

Thrust axis method

- ① Collect all hadronized particles in the ILC frame
- ② Boost them into the BB frame and calculate thrust axis
- ③ Boost the vectors along the thrust axis into the rest frame of e^-e^+

sample A : use same parameters with ②

sample B : consider ISR/BS effects \rightarrow introduce the k_{e^-} , k_{e^+}

Considering ISR/BS effects

Collinear approximation: Photon radiation is assumed to be along the beam lines

$$\vec{e}^{-} = \hat{\eta}_{e^{-}} E_{e^{-}} \tag{1}$$

$$\vec{e}^{+} = \hat{\eta}_{e^{+}} E_{e^{+}} \tag{2}$$

with,

$$\hat{\eta}_{e^-} = (\sin\theta_c, 0, \ \cos\theta_c) \tag{3}$$

$$\hat{\eta}_{e^+} = (\sin\theta_c, 0, -\cos\theta_c) \tag{4}$$

$$E_{e^{\pm}} = E = 250 \text{ GeV} \tag{5}$$

where θ_c is the beam crossing angle, $\theta_c = 7$ mrad.

In this approximation, the directions are not changed but only the energies are changed. Then the electron and positron thre-momenta become:

$$(\vec{e}^{-})^{*} = \hat{\eta}_{e^{-}} E_{e^{-}}^{*} = \hat{\eta}_{e^{-}} E(1 - k_{e^{-}}) \quad \text{with} \quad k_{e^{-}} = \frac{E - E_{e^{-}}^{*}}{E}$$
(6)

$$(\vec{e}^{+})^{*} = \hat{\eta}_{e^{+}} E_{e^{+}}^{*} = \hat{\eta}_{e^{+}} E(1 - k_{e^{+}}) \text{ with } k_{e^{+}} = \frac{E - E_{e^{+}}}{E}$$
(7)

where $E_{e^{\pm}}^{*}$ is the energy of electron or positron just before collision.

ILD Analysis/Software Meeting

Distribution of cos\theta and k_e- (MC truth)

Kinematical reconstruction

Strategy of the kinematical reconstruction

There are 8 unknown kinematics in this state

(= the momenta of two neutrinos and energy of two b-jets)

Impose 8 constraints (= initial state constraints and $m_t, m_{\bar{t}}, m_{W^+}, m_{W^-}$)

→ Solutions are obtained in terms of $(\theta_t, \phi_t) \rightarrow (\theta_t, \phi_t, m_t, m_{\bar{t}}, m_{W^+}, m_{W^-})$

But the equation is nonlinear. Furthermore an ambiguity of b-charge remains.

 \rightarrow Typically 4 solutions per event.

Select the optimal solution

Compare $E_b^{\text{meas.}}$ (by thrust axis method) and $E_b^{\text{rec.}}$ (by kinematical reconstruction).

and (k_{e^-}, k_{e^+}) for sample B

Kinematical reconstruction : Results

The k's are free to vary between 0 and 1 without constraint for now

- Result of sample B is not that bad comparing with A
 - \rightarrow Plan to check if it is enough for the analysis using MEM

Kinematical reconstruction : Results

 \rightarrow Plan to check if it is enough for the analysis using MEM

Status of the 10 form factors fit (sample A)

-0.0067 ± 0.0082
0.035 ± 0.017
-0.056 ± 0.012
0.035 ± 0.018
-0.022 ± 0.026
0.042 ± 0.045
-0.0081 ± 0.015
0.010 ± 0.032
0.013 ± 0.024
-0.010 ± 0.022

(Preliminary)

5000 events, after cut on the $\chi^2_{tot.}$ to keep ~83% of the events without ISR/BS

Some small biases are observed (eg. Δ_{F3}) at few percent level

\rightarrow No show stopper yet !!!

 \rightarrow Use **sample B** for the matrix element method

Summary & Plan

Started realistic study using sample B (= DBD sample)

- Accuracy of kinematical reconstruction is not that bad comparing the sample A (without ISR/BS)
- Seeds issue for the kinematical reconstruction still remains

Analysis with Matrix element method

- 10 form factors can be fitted at percent precision for **sample A**
- \rightarrow Apply the Matrix element method on sample B

Back up

Kinematical constraints

In the W rest frame, the energy of isolated lepton is equal to $m_W/2$ (with ignoring ISR and bremsstrahlung)

Measurements of b-quark energies

To select a right solution, we can use the measurement of b-jets energy. (Because this figure is at parton level, the χ_b^2 doesn't make sense.)

Miss combination of b-quarks

When we use the anti-b direction for the top reconstruction, the measurements of energy of b-jets excludes this combination.

Comparison Thrust axis method and Jet clustering

The angle between truth direction and reconstructed direction of b quark Red : Thrust axis method Blue : Jet clustering (LCFIPlus)

Two methods produce almost same precision for direction of b-quark.

 \rightarrow We select the thrust axis method for this study so far.

Assessment of energy of b-jet

Deviation of energy of b-jet
(using thrust axis method)
Red : Original
Blue : Fitted
(Blue is a sum of Pink and Green)

To estimate the b-jet energy resolution we use multiple Crystal Ball functions for fitting.

$$CB(x|\alpha, n, \mu, \sigma) = \begin{cases} N \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), & \frac{x-\mu}{\sigma} > -\alpha\\ N \cdot A \cdot \left(B - \frac{x-\mu}{\sigma}\right)^{-n}, & \frac{x-\mu}{\sigma} < -\alpha \end{cases}$$

So far we use $\sigma_{jet} E_b^K$ with two parameters σ_{jet} and K for σ .

χ^2 algorithm : General

1. Define the χ^2_{μ} ;

$$\chi_{\mu}^{2} = \chi_{\mu^{+}}^{2} + \chi_{\mu^{-}}^{2}, \quad \chi_{\mu^{\pm}}^{2} = \left(\frac{E_{\mu^{\pm}}^{**}(\theta_{t},\phi_{t},m_{t},m_{t},m_{W^{+}},m_{W^{-}}) - m_{W^{\pm}}/2}{\sigma[E_{\mu^{\pm}}^{**}]}\right)^{2}$$

The energy of μ^{\pm} in the W^{\pm} rest frame, $E_{\mu^{\pm}}^{**}$, must be equal to $m_{W^{\pm}}/2$.

2. Define the δ_b^2 ;

$$\delta_b^2 = -2\log L_b - 2\log L_{\overline{b}}, \ L_b = \operatorname{CB}\left(E_b^{\operatorname{meas.}} - E_b^{\operatorname{rec.}}(\theta_t, \phi_t, m_t, m_{\overline{t}}, m_{W^+}, m_{W^-})\right)$$

The likelihood function is obtained from the assessment of b-jets energy.

3. Compound $\chi^2_{\text{tot.}}$; $\chi^2_{\text{tot.}} = \chi^2_{\mu} + \delta^2_b$

One minimizes the χ^2_{tot} to obtain the optimal solution; $(\theta_t, \phi_t, m_t, m_{\bar{t}}, m_{W^+}, m_{W^-})$.

χ^2 algorithm : Optional

The direction of b-jets is obtained by thrust axis method.

- → Add 4 angles $(\theta_b, \phi_b, \theta_{\bar{b}}, \phi_{\bar{b}})$ to the minimization parameters
- → Add constraints of 4 angles $(\theta_b, \phi_b, \theta_{\bar{b}}, \phi_{\bar{b}})$ to $\chi^2_{tot.}$ as follows;

$$\chi^{2}_{\text{direction}} = \chi^{2}_{\theta_{b}} + \chi^{2}_{\phi_{b}} + \chi^{2}_{\theta_{\overline{b}}} + \chi^{2}_{\phi_{\overline{b}}}, \qquad \chi^{2}_{\theta_{b}} = \left(\frac{\theta^{\text{meas.}}_{b} - \theta_{b}}{\sigma[\theta^{\text{meas.}}_{b}]}\right)^{2}$$

 $(\chi^2_{\phi_b}, \chi^2_{\theta_{\overline{b}}}, \chi^2_{\phi_{\overline{b}}}$ are same as $\chi^2_{\theta_b})$

$$(\chi^2_{\text{tot.}})' = \chi^2_{\text{tot.}} + \chi^2_{\text{direction}}$$

We can use $(\chi^2_{tot.})'$ instead of $\chi^2_{tot.}$ to get the optimal solution, which is written in $(\theta_t, \phi_t, m_t, m_{\bar{t}}, m_{W^+}, m_{W^-}, \theta_b, \phi_b, \theta_{\bar{b}}, \phi_{\bar{b}})$

Kinematical reconstruction : Results

Reconstructed particles \rightarrow 9 helicity angles :

$$\cos heta_t$$
 , $\cos heta_{W^+}$, ϕ_{W^+} , $\cos heta_{\mu^+}$, ϕ_{μ^+} , $\cos heta_{W^-}$, ϕ_{W^-} , $\cos heta_{\mu^-}$, ϕ_{μ^-}

 $(\rightarrow \text{Matrix element squared} \rightarrow \text{Fit Form Factors})$

eg.) $\phi_{\mu^+,rec.} - \phi_{\mu^+,truth}$ eg.) $\cos \theta_t$ 250 Reconstructed 500 Truth 200 400 150 300 100 200 100 -0.2 0.2 -1.5 -0.5 0.5 0 -1 cos0,

The ratio of wrong assignment of b-quark is only 2.1 % ! (cf. ~16 % for the semi-leptonic analysis, Yo Sato Top@LC 2016)

Analysis with Matrix element method

Illustration of analysis : 5000 unpolarized events

• using only $\cos \theta_t$ • using the complete set of 9 helicity angles

 $\chi^{2}(\delta F_{2V}^{Z})$ function (normalized such that $\chi^{2}(0) = 0$) $\delta F_{2V}^{Z} = 0.080 \pm 0.05$ by $\cos \theta_{t}$ $\delta F_{2V}^{Z} = 0.001 \pm 0.01$ by the complete set

Number of events not used on purpose to compare the intrinsic power of these two to determine a single form factor, F_{2V}^Z .