$e^{+} e^{-} \rightarrow b \bar{b}_{b}$ rge measurrement
 b charge measưrement

Poeschl R., Richard F., Bilokin S. LAL, Orsay

ILD Software and Analysis meeting

Objective

- Final goal of this work is estimation b quark asymmetry and cross-section of $e^{-} e^{+} \rightarrow b \bar{b}$ process
- We have two methods to identify b-jet charge:

- Charge of the b-quark is calculated as a sum of the charges of secondary and ternary vertex particles
- The charge of K-mesons from reconstructed vertices is directly connected to the charge of bquark

Motivation

- The measured value of Afb for b-quarks has the highest tension with Standard Model expectation

Motivation

- Asymmetry is extremely strong for left-handed case
- Different Randall-Sundrum scenarios can affect SM polar angle spectrum
- Polarization of initial state is important

Research setup

- We are using 250 GeV Z -> q qbar sample with pair background v01-16-05 (DBD)
- For background estimation WW, ZZ and HZ samples are used
- TruthVertexFinder from MarlinReco/Analysis to get the generated vertices
- Modified version of VertexChargeRecovery from MarlinReco/Analysis (Recovery)

Available samples

$13.53 \mathrm{fb}^{-1}$

$$
\begin{array}{cl}
Z / \gamma \rightarrow b \bar{b} & \begin{array}{l}
20.2 \% \text { events } \\
m(b \bar{b})>200 G e V
\end{array} \begin{array}{l}
\text { 21.7\% events } \\
\\
75 k \text { events }
\end{array}
\end{array}
$$

Expected for 500 fb-1: ~15 times more (assuming luminosity sharing)

$e_{R}^{-} e_{L}^{+}$

$20.01 \mathrm{fb}^{-1}$

19.8% events of $Z / \gamma \rightarrow q \bar{q}$
8.9\% events of $Z / \gamma \rightarrow b \bar{b}$

25k events

~ 4 times more

- Available MC samples are much smaller than we expect for H 20 scenario

Cross-section measurements

To measure the cross-section we need to know the purity and efficiency of our selection

	$e_{L}^{-} e_{R}^{+} \rightarrow b \bar{b}$	$e_{R}^{-} e_{L}^{+} \rightarrow b \bar{b}$
	$b-t a g_{1,2}>0.85$	$b-t a g_{1,2}>0.85$
Sum of jet masses	$m_{1}+m_{2}<140 G e V$	$m_{1}+m_{2}<100 G e V$
Event sphericity	$S_{I}<0.15$	$S_{I}<0.1$
Invariant mass	$m_{i n v}>180 G e V$	$m_{i n v}>200 G e V$
Max photon energy	$E_{\max }^{\gamma}<40 G e V$	$E_{\max }^{\gamma}<40 G e V$
	97.7\% purity 40.4\% efficiency	97.3\% purity 33.1\% efficiency

- Using double over single tag ratio to derive the tagging efficiency as for LEP I (Steinberger J. [https://cds.cern.ch/record/326438/files/open-97-013.pdf])

Event preselection for polar angle

1) Sort jets by b-tag
2) B-tag cuts: 0.8 for a high-tagged jet and 0.3 for a low-tagged jet
3) For Z return rejection:

- Invariant mass > 180 GeV and maximum photon energy $<40 \mathrm{GeV}$

4) For diboson background rejection

- Sum of jet masses $<120 \mathrm{GeV}$ and event sphericity <0.2
- Efficiency of the preselection is $\mathbf{\sim 5 5 \%}$ for both polarizations

Event selection for polar angle

- We are using kaon charge and vertex charge combination to define a charge of a bjet
- Kaons are identified using generator information on each particle in a reconstructed secondary or ternary vertex
- but we introduce $\sim 94 \%$ purity and 88% efficiency, according to our previous PID studies
- Kaon charge is a sum of charges of all kaons found in jet vertices, zero sum is rejected
- Vertex charge is the sum of all secondary and ternary track charges in a jet, zero sum is rejected
- Only independent combinations are used to avoid charge correlations in the final result:
- Vertex charge from one jet, vertex charge from another jet
- Kaon charge from one jet, kaon charge from another jet
- Event is accepted if charges are opposite

B polar angle

$$
\begin{array}{lll}
e_{L}^{-} e_{R}^{+} \rightarrow b \bar{b} \\
A_{f b}^{\text {gen }}=0.708 & & e_{R}^{-} e_{L}^{+} \rightarrow b \bar{b} \\
& A_{f b}^{\text {gen }}=0.2753
\end{array}
$$

89.\% of generated Afb (fit)

$$
A_{f b}^{r e c}=0.63 \pm 0.01(1.6 \%)
$$

85.6\% of generated Afb (fit)

$$
A_{f b}^{r e c}=0.23 \pm 0.013(5.6 \%)
$$

- There is a difference between reconstructed and generated plots and values, due to residual charge misreconstruction and B0 oscillations => correction is required

B polar angle correction

- We can use refused events with contradictory charges as a measure of our charge purity and calculate correction factors
- Let q be a probability of an incorrect charge measurement of a jet
- Then $p=1-q$ is a correct charge probability
- We can compute it from the following equations:

$$
N_{a}=N_{a}^{+}+N_{a}^{-}=p^{2} N+q^{2} N \quad N_{r}=2 p q N
$$

\# of refused events
$N=N_{a}+N_{r}$
\# of accepted events

- We define a number of true events:

$$
\left\{\begin{array}{l}
N_{a}^{+}=p^{2} N_{\text {true }}^{+}+q^{2} N_{\text {true }}^{-} \\
N_{a}^{-}=p^{2} N_{\text {true }}^{-}+q^{2} N_{\text {true }}^{+}
\end{array}\right.
$$

Migration terms

- Corrected values:

$$
\left\{\begin{array}{l}
N_{a}^{+\prime}=p^{2} N_{\text {true }}^{+} \\
N_{a}^{-\prime}=p^{2} N_{\text {true }}^{-}
\end{array}\right.
$$

- We do not use generator information for correction

B polar angle after recovery

- Errors on the asymmetry are statistical
- We need more statistics for publication

Conclusions

- Selection efficiency for cross-section measurement is higher than LEP I with the same purity
- Asymmetry for left-handed case is very strong
- 5% migrating events contaminate backward hemisphere completely
- Using the refused events we can correct the asymmetry and polar angle distribution
- Strong acceptance loss towards large polar angles
- The results can be published, but...

Needed for publication

- More statistics is required
- Request to ILD:
- 250 fb-1 for both polarizations (for b bbar on center-of-mass)
- Study influence of limited acceptance (sys. error)
- Interpretation of the results including extraction of coupling constants $g_{L}^{b} g_{R}^{b}$

Thank you!

B cross section

$$
e_{L}^{-} e_{R}^{+} \rightarrow b \bar{b}
$$

$e_{R}^{-} e_{L}^{+} \rightarrow b \bar{b}$

- High b-tag cuts for both jets >0.85
- There is an impact of higher Z return background for right-handed case

Invariant mass distributions

$$
\begin{array}{ccc}
e_{L}^{-} e_{R}^{+} & e_{R}^{-} e_{L}^{+} \\
Z / \gamma \rightarrow b \bar{b} & 20.2 \% \text { events } & 19.8 \% \text { events } \\
m(b \bar{b})>200 G e V & 21.7 \% \text { events } & 8 / \gamma \rightarrow q \bar{q} \\
\hline 2.9 \% \text { events } & \text { of } Z / \gamma \rightarrow b \bar{b}
\end{array}
$$

- Radiative Z return events are excluded by a cut on generated invariant mass

Reconstruction quality DBD vs Recovery

B polar angle after recovery

$$
m(b \bar{b})>200 G e V
$$

$$
e_{L}^{-} e_{R}^{+} \rightarrow b \bar{b}
$$

Signal only

- Around 5% of accepted events are migrating due to an incorrect charge measurement

Corrected b polar angle

$m(b \bar{b})>200 G e V \quad$ Generated kaons and vertex combination

- 'Migration' problem in the backward hemisphere and 'acceptance' effects in the forward region have to be addressed
- In this talk we discuss 'migration' effect only

Corrected b polar angle

$m(b \bar{b})>200 G e V \quad$ Generated kaons and vertex combination

- Method works well for asymmetry reconstruction, and for the polar angle
- Small caveat: there are technical problems with correction factors for mixed VTX+KAON events

B polar angle correction

- To cope with 'migration' effect, we have used the large sample of events with contradictory charges
- Assume that around a certain value $\left|\cos \theta_{b}\right|$ we have rejected N_{r} events as being contradictory, selected N_{a}^{+}events as having $\left|\cos \theta_{b}\right|>0$ and N_{a}^{-}events with $\left|\cos \theta_{b}\right|<0$
- Then one can write

$$
N_{a}=N_{a}^{+}+N_{a}^{-}=p^{2} N+q^{2} N
$$

- Where p is a charge purity, $q=1-p$
- We can find p by solving these equations.

B polar angle correction

- One is left with the following equations:

$$
\left\{\begin{array}{l}
N_{a}^{+}=p^{2} N_{\text {true }}^{+}+q^{2} N_{\text {true }}^{-} \\
N_{a}^{-}=p^{2} N_{\text {true }}^{-}+q^{2} N_{\text {true }}^{+}
\end{array} \quad\right. \text { Migration terms }
$$

- Where $N_{\text {true }}^{ \pm}$are the two unknown number of events with positive and negative polar angles
- Corrected values:

$$
\left\{\begin{array}{l}
N_{a}^{+\prime}=p^{2} N_{\text {true }}^{+} \\
N_{a}^{-\prime}=p^{2} N_{\text {true }}^{-}
\end{array}\right.
$$

- Errors on corrected values can be computed
- We are not using generator information for correction

Purity

Purity by d

Purity by $\mathrm{N}_{\text {reco }}$

Purity by momentum

Purity by |cos θ |

