# first studies using CAIN

preparing tools for MDI studies

- luminosity of different beam parameters @ 250 GeV TDR vs new proposal from Yokoya
- incoherent pairs: beamcal, vertex detector
- beamstrahlung photons: gamcal

D Jeans 7 Feb 2017

## Machine parameters

Yokoya-san suggests that reducing horizontal emittance from 10 → 5 µrad may be a reasonable way to increase luminosity at 250 GeV at constant cost (all other parameters as for TDR)

simulate new and TDR parameters using CAIN code (with and without crossing angle+crab)

detector effects without anti-DID for now



Luminosity spectra

TDR (head-on 14mrad crossing)

new (head-on 14mrad crossing)



## numerical results

|                     | TDR params           | new         | enhancement |
|---------------------|----------------------|-------------|-------------|
| all energies        |                      |             |             |
| (no cross)          | 8.07263e+33          | 1.34742e+34 | 1.66912     |
| (crossing)          | 8.07217e+33          | 1.34655e+34 | 1.66814     |
| energy above 2.25e+ | -11 (90% of 250GeV   | <b>'</b> )  |             |
| (no cross)          | 8.06704e+33          |             | 1.65426     |
| (crossing)          | 8.06666e+33          | 1.33388e+34 | 1.65357     |
| energy above 2.375e | e+11 (95% of 250 GeV | /)          |             |
| (no cross)          | 7.98104e+33          | 1.27356e+34 | 1.59573     |
| (crossing)          | 7.98144e+33          | 1.27319e+34 | 1.59519     |
| energy above 2.475e | +11 (99% of 250 GeV  | /)          |             |
| (no cross)          | 6.87529e+33          | 9.56972e+33 | 1.3919      |

| crossing) | 6.87466e+33 | 9.56715e+33           | 1.39165                           |
|-----------|-------------|-----------------------|-----------------------------------|
|           | crossing)   | crossing) 6.87466e+33 | crossing) 6.87466e+33 9.56715e+33 |

incoherent pairs

incoherent pair particles from CAIN simulated 10 bunch crossings for each scenario

- 1. extrapolate them to beampipe & beamcal assuming uniform detector field
- pass them through full ILD simulation for now, assuming uniform B-field (ie no anti-DID) vertex detector hits

envelope of incoherent e+e- pairs, uniform 3.5 T field, toy extrapolation



envelope of incoherent e+e- pairs, uniform 3.5 T field, toy extrapolation

extrapEnvelope2 posZ positron radius [mm] set1 10<sup>3</sup> DR 10<sup>2</sup> 10 approx 10 beampipe 10<sup>-1</sup> position 00 10-2 80 90 100 10 20 60 70 30 40 50 100 mm  $\mathbf{0}$ extrapEnvelope2\_posZ\_positron radius [mm] set3 30 10' 10<sup>3</sup> New 10<sup>2</sup> 15 10 10<sup>-1</sup> 10<sup>-2</sup> 20 z [mm] 50 60 90 100 10 70 80 100 mm Ω

## head-on

## 14mrad crossing

particles/bunch/bin



#### energy of incoherent e+e- on +z BeamCal face, assuming uniform 3.5 T field, toy extrapolation



Full dd4hep/geant4 simulation of incoherent pair background in ILD\_I1\_v01, latest software version v01-19-01, no anti-DID field sum of 10 bunch collisions



- x2 increase in direct hits on L1

- backscattered hits should depend strongly on detector B-field model...

#### hit distribution in $1^{st}$ VTX layer, direct hits (t < 12 ns)

fullsim, sum of 10 bunch collisions



### hit distribution in $1^{st}$ VTX layer, backscattered hits (t > 12 ns)

head-on

New

fullsim, sum of 10 bunch collisions

#### 14mrad crossing



beamstrahlung photons at gamcal position

 $\rightarrow$  simple extrapolation of photons to +- 100m

look at effect of vertical offset between beams

#### energy distribution of beamstrahlung photons at +z beamcal (100m from IP) TDR parameters (without crossing) : vary vertical offset between beams



energy distribution of beamstrahlung photons at +z beamcal (100m from IP) TDR parameters (without crossing) : vary vertical offset between beams



GeV / bin / bunch

## summary

developing various analyses to study MDI topics

working to implement anti-DID model(s) to make more meaningful conclusions

#### compare lumi determined by 10 CAIN runs (I take average of these)

enRange0\_helset0 enRange0 helset0 1.2 Entries 10 rms = 2.36 % Mean 1.347e+34 3.174e+32 Std Dev 1 8.0 0.6 0.4 0.2 33  $\times 10$ 0 12.8 13 13.2 13.4 13.6 13.8

## (wrong)

## Luminosity spectra of the 4 parameter sets



## (wrong)

## Luminosity spectra of the 4 parameter sets (zoom)



## numerical results (wrong, superseeded)

### luminosities

| helicities                                                                                            | all                                                | ++                                                 | _ +                                                | + _                                                |                                                    |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| energy above 0<br>TDR params (crossing)<br>new params (crossing)<br>ratio new/old (crossing):         | 7.88073e+33<br>1.27342e+34<br><mark>1.61587</mark> | 8.88158e+27<br>8.47015e+28<br><mark>9.53676</mark> | 6.36033e+30<br>2.33315e+31<br><mark>3.66829</mark> | 6.29011e+30<br>2.30899e+31<br><mark>3.67083</mark> | 7.86807e+33<br>1.26877e+34<br><mark>1.61256</mark> |
| energy above 2.25e+11<br>TDR params (crossing)<br>new params (crossing)<br>ratio new/old (crossing):  | (90%)<br>7.87527e+33<br>1.26247e+34<br>1.60308     | 8.73386e+27<br>7.52772e+28<br><mark>8.61901</mark> | 6.30406e+30<br>2.1994e+31<br><mark>3.48887</mark>  | 6.23623e+30<br>2.1813e+31<br><mark>3.49778</mark>  | 7.86272e+33<br>1.25808e+34<br><mark>1.60005</mark> |
| energy above 2.375e+11<br>TDR params (crossing)<br>new params (crossing)<br>ratio new/old (crossing): | (95%)<br>7.79188e+33<br>1.20819e+34<br>1.55058     | 8.06476e+27<br>6.06405e+28<br>7.51919              | 5.99231e+30<br>1.91592e+31<br><mark>3.19729</mark> | 5.93203e+30<br>1.90289e+31<br><mark>3.20782</mark> | 7.77995e+33<br>1.20437e+34<br><mark>1.54804</mark> |
| energy above 2.475e+11<br>TDR params (crossing)<br>new params (crossing)<br>ratio new/old (crossing): | (99%)<br>6.71582e+33<br>9.14587e+33<br>1.36184     | 5.47168e+27<br>2.98943e+28<br>5.46347              | 4.51467e+30<br>1.15347e+31<br><mark>2.55494</mark> | 4.47592e+30<br>1.14615e+31<br><mark>2.56071</mark> | 6.70682e+33<br>9.12284e+33<br>1.36023              |

Luminosity increase: 62% (total), 55% (>95%), 36% (>99%)

envelope of incoherent e+e- pairs, assuming uniform 3.5 T field, toy extrapolation



#### wrong beam parameters

particles/bunch

envelope of incoherent e+e- pairs, assuming uniform 3.5 T field, toy extrapolation



#### hit distribution in $1^{st}$ VTX layer, direct hits (t < 12 ns)



#### new parameters

crossing angle

fullsim, sum of 10 bunch collisions

#### hit distribution in $1^{st}$ VTX layer, backscattered hits (t > 12 ns)

fullsim, sum of 10 bunch collisions

#### **TDR** parameters



#### new parameters

#### hit distribution in $2^{nd}$ VTX layer, direct hits (t < 12 ns)

#### fullsim, sum of 10 bunch collisions

#### new parameters

#### **TDR** parameters



#### hit distribution in $2^{nd}$ VTX layer, backscattered hits (t > 12 ns)

fullsim, sum of 10 bunch collisions



#### fullsim, sum of 10 bunch collisions no anti-DID

#### **TDR** parameters new parameters vtxBkg\_set11.root vtxBkg\_set12.root beamCalEn negZ eamCalEn negZ GeV 150 150 Entries 114431 Entries 95713 100 10 100 no crossing Y [mm] 10 bunches 50 50 10-1 -50 -5010<sup>-2</sup> -100 -100 bin -150-150-150 Xຶ[mm]ຶ 150 -150 100 150 -100 -50 -100 -50 50 vtxBkg\_set14.root vtxBkg\_set13.root beamCalEn negZ beamCalEn negZ 150 150 10<sup>2</sup> Entries 94533 Entries 72906 10<sup>2</sup> 100 100 10 10 crossing angle 50 50 0 10<sup>-1</sup> 10 -50-50 $10^{-2}$ -100 $10^{-2}$ -100-150 -15010<sup>-3</sup> -150 -100 -50 50 100 150 -150 -100 -50 50 100 150

wrong beam parameters

## energy in -z beamcal

# Full dd4hep/geant4 simulation of incoherent pair background in ILD\_I1\_v01, latest software version v01-19-01, no anti-DID field sum of 10 bunch collisions

## time of hits in different vertex detector layers



#### number of incoherent e+e– on BeamCal face assuming uniform 3.5 T field, toy extrapolation

new parameters





#### energy of incoherent e+e- on BeamCal face, assuming uniform 3.5 T field, toy extrapolation



energy distribution of beamstrahlung photons at +z beamcal (100m from IP) TDR parameters (without crossing) : vary vertical offset between beams

