IP parameter optimization for low energy operation

Toshiyuki OKUGI, KEK 2017/ 02/ 07

Geometrical aberration for electron beam ($\sigma_p/p = 0.188\%$) $\gamma \varepsilon_x = 10 \ \mu m$, DY = 25

Smaller betaX*

Small hour-glass effect

=> higher luminosity by same disruption parameter.

- Large geometrical aberration
 - => Luminosity reduction, tight tolerance etc.
- Small horizontal collimation depth
 => Large detector background

Geometrical aberration for small emittance beam

$\gamma \varepsilon_x = 10 \ \mu m$, DY = 25

Geometrical aberration is weaker than that with large emittance beam.

Collimation Depth for 125GeV beam (ECM=250GeV operation)

When the horizontal emittance is smaller than design, the collimation depth can widen for smaller betaX*.

=> We had better to set the smaller betaX* for smaller emittance.

BDS optics for ECM=1TeV operation

ECM= 500GeV optics can be increased the beam energy up to 300GeV (ECM=600GeV) The beam optics can be increased to ECM=1TeV by using same geometry.

- The most of magnets for ECM=500GeV can reuse to 1TeV optics.
- Some new magnets should be installed to extend to ECM=1TeV.

Simulation Results for ECM=1TeV optics

Large aberration by Synchrotron radiation

	Horizontal			Vertical			Relative
	design	rms	core	design	rms	core	Luminosity
no SR	0.481um	0.481um	0.481um	2.99nm	2.99nm	2.99nm	99.8%
with SR		0.499um	0.498um		3.71nm	3.15nm	91.7%

The geometry of BDS beamline has strong constraint for synchrotron radiation at 1TeV operation.

Synchrotron radiation for BDS at ECM=500GeV with strong bending magnet.

Electron beam ($\sigma_p/p = 0.188\%$)

Momentum Spread Growth by Synchrotron Radiation

	Collimator	FF beamline	Total
B = 1.0 x B0	0.0058%	0.0017%	0.0061%
B = 1.5 x B0	0.0059%	0.0020%	0.0062%
B = 2.0 x B0	0.0060%	0.0024%	0.0064%

Horizontal Emittance Growth by Synchrotron Radiation

	Collimator	FF beamline	Total
B = 1.0 x B0	0.45%	0.07%	0.52%
B = 1.5 x B0	0.67%	0.49%	1.16%
B = 2.0 x B0	1.49%	2.06%	3.55%

By using the strong bending magnet, the strength of sextupole magnet can be reduced. => Small geometrical aberration for low energy operation.

The emittance growth can be reduced by putting additional BENDs in beamline.

IP beam profile at ECM=250GeV for BDS with strong BEND

 $\sigma_p/p = 0.188\%$ $\beta_x^* = 0.013 \text{ m}$, $\beta_y^* = 0.00041 \text{ m}$

Present ILC BDS was designed to be used for ECM=250-1000GeV. Therefore, the optics is not optimized for ECM=250GeV.

If we decide the optics will be redesigned only for ECM=250-500GeV, we can make the optics at ECM=250GeV small aberration (and maybe compact).

backup

Geometrical aberration for positron beam ($\sigma_p/p = 0.150\%$) $\gamma \varepsilon_{\chi} = 10 \ \mu m$, DY = 25

 $\gamma \varepsilon_x = 5 \ \mu m$, DY = 35

