Beamstrahlung Background Simulation Status Report

Alejandro Pérez IPHC – CNRS Strasbourg

Inputs from DESY ILC Group

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Outline

- Latest related software developments
- Latest Beamsthrahlung Pre-production
- Some very preliminary results
- Summary and Outlook

Latest Related Software Developments

Guinea-Pig output reader

- Guinea-Pig generator: ascii file with a list of primaries from a bunch-crossing
 - Format:

Sign-E(GeV) $\beta_x \beta_y \beta_z$ Vtx(nm) Vty(nm) Vtz(nm)

Reader implemented in DD4Hep

Anti-DID field map reader

- Field map produced with finite element analysis
 - (B_x, B_y, B_z) field @ 3D grid points (Xi, Yi, Zi)
- FieldXYZ reader implemented in ILCSoft/Icgeo
 - B-field is a 3D linear interpolation using Field-Map grip points
 - Possibility to apply global scale factor
 - \Rightarrow antiDID tuning

Latest Beamstrhlung Pre-prod: ILD Detector Model

800 X600 1 10^{-1} 400 10^{-2} 200 10⁻³ 0 10⁻⁴ -20010⁻⁵ -400-600**10**⁻⁶ -800 10^{-7} 200 400 600 800 -800-600-400-200 0 Z [cm]

For the present study study use ILD_o1_v05: legacy model (DBD)

Other detector models also available which could me studies in the future

Other Detector Models

HCAL technology	HCAL geometry	Large	Small
Scintillator	Т	ILD_I1_v01	ILD_s1_v01
RPC	V	ILD_I2_v01	ILD_s2_v01
combined	Т	ILD_I4_v01	

Latest Beamstrhlung Pre-prod: Solenoidal Field

Solenoidal field map

- Finite element analysis calculation (DESY)
- $B_{\gamma} = 3.5$ Tesla B_{γ} field inside Tracker with Standard Yoke
- Azimuthal symmetry, and mirror symmetry of B_{γ} w.r.t origin

 \Rightarrow B__ and B__ component in grid of Z and ρ coordinates

NOTE: currently step-size is 10 cm. Smaller step should be studied!

Latest Beamstrhlung Pre-prod: Anti-DID field

Anti-DID field map

- Finite element analysis calculation (DESY)
- $B_x = \pm 30$ mTesla for Z \approx 3 m along Z-axis
- No symmetries exploited

 \Rightarrow B, B, and B, components in grid of X, Y and Z coordinates

NOTE: currently step-size is 10 cm. Smaller step should be studied!

anti-DID field map @ X = 0

Latest Beamstrhlung Pre-prod: e⁺e⁻ pairs primaries

Available samples

- E_{beam} (E_{CM}): 250 (500) GeV
 - #bunches = 1312
 - Crossing angle = 14 mrad
- E_{beam} (E_{CM}): 350 (700) GeV
 - #bunches = 1312
 - Crossing angle = 14 mrad
- E_{beam} (E_{CM}): 500 (1000) GeV
 - #bunches = 1325
 - Crossing angle = 14 mrad

Pre-production

 Simulated 100 BX of the E_{beam} = 250 & 500 GeV samples w/o anti-DID

Very Preliminary Results E_{beam} = 250 GeV: VXD (I)

- Current results w/o anti-DID quite in agreement with previous results
- Anti-DID reduces moderately rates on VXD
 - ~ 15 % in layers 1 2
 - ~ 20 % in layers 3 4
 - ~ 10 % in layers 5 6

	Layer	Units	DBD Prev	This Prod w/o antiDID	This Prod w/ anti-DID	
	1	Hits/BX/cm ²	6.32 ± 1.76	5.42 ± 0.02	4.65 ± 0.02	
	2		4.00 ± 1.18	3.70 ± 0.02	3.14 ± 0.02	Note: current results
	3		0.25 ± 0.11	0.166 ± 0.002	0.134 ± 0.002	error is stat-only
	4		0.21 ± 0.09	0.137 ± 0.002	0.108 ± 0.001	
	5		0.04 ± 0.03	0.044 ± 0.001	0.039 ± 0.001	
A. Perez	6	- 50100 Mile Mile 1	0.04 ± 0.03	0.041 ± 0.001	0.037 ± 0.001	

Very Preliminary Results E_{beam} = 250 GeV: VXD (II)

Particles hitting VXD produced mainly @

- IP: 60 80 %
- Very Fwd and Bwd (|Z| > 3 m): 20 30 % (Back-scattered particles)
- Inside inner detector: 5 10 %

A. Perez Perez, ILD Software and Technical Meeting – Apr. 27 2017

Very Preliminary Results E_{beam} = 250 GeV: VXD (III)

- Anti-DID main effect is to reduce the back-scattered component of the hit rate
 - From 20 30 % \rightarrow 10 25 %
- Bkg particles tend to be better aligned within the beam pipe
- Some tuning is needed which should be E_{beam} dependent

Production vertex in Fwd/Bwd (|Z| > 3 m) region of particles hitting VXD

Very Preliminary Results E_{beam} = 250 GeV: VXD (IV)

Some Beamstrahlung Bkg features on VXD

A. Perez Perez, ILD Software and Technical Meeting – Apr. 27 2017

Very Preliminary Results E_{beam} = 250 GeV: SIT

Layer	Units	DBD Prev	This Prod w/o antiDID	This Prod w/ anti- DID
1	Hits/BX/cm ²	0.0009 ± 0.0013	0.0461 ± 0.0003	0.0347 ± 0.0002
3		0.0002 ± 0.0003	0.00418 ± 0.00004	0.00250 ± 0.00003

Note: current results error is stat-only

Very Preliminary Results E_{beam} = 250 GeV: FTD

7164	monition	(~ ~ ~)
	DOSILION	CIIII
<u> </u>	position	

	Layer	Units	DBD Prev	This Prod w/o antiDID	This Prod w/ anti- DID	
	1	Hits/BX/cm ²	0.072 ± 0.024	0.0492 ± 0.0006	0.0430 ± 0.0005	
	2		0.046 ± 0.017	0.0439 ± 0.0005	0.0394 ± 0.0005	Noto: current results
	3		0.025 ± 0.009	0.0341 ± 0.0002	0.0304 ± 0.0002	error is stat-only
	4		0.016 ± 0.005	0.0277 ± 0.0002	0.0259 ± 0.0002	
	5		0.011 ± 0.004	0.0229 ± 0.0002	0.0215 ± 0.0002	
	6		0.007 ± 0.004	0.0205 ± 0.0002	0.0194 ± 0.0002	
A. Perez	7		0.006 ± 0.003	0.0177 ± 0.0002	0.0169 ± 0.0002	13

Very Preliminary Results E_{beam} = 250 GeV: SET

- Current results w/o anti-DID in disagreement with previous results
- Anti-DID reduces rates on SET
 - ~ 50 %

Layer	Units	DBD Prev	This Prod w/o antiDID	This Prod w/ anti- DID
1	Hits/BX	0.215 ± 0.690	45.0 ± 0.7	22.7 ± 0.5

Note: current results error is stat-only

Very Preliminary Results E_{beam} = 250 GeV: TPC

- Current results w/o anti-DID in disagreement with previous results
- Anti-DID reduces rates on TPC
 - ~ 10 %

Layer	Units	DBD Prev	This Prod w/o antiDID	This Prod w/ anti- DID	Note: current results error is stat-only
1	Hits/BX	216 ± 302	913 ± 3.0	792.0 ± 2.9	

X vs Y projection of TPC Hit map

X vs Y projection of TPC Hit map

A. Perez Perez, ILD Software and Technical Meeting – Apr. 27 2017

Summary and Outlook

All tools needed for Beamstrahlung background simulation already in place

- Guinea-Pig output reader
- Anti-DID field map implementation

Pre-production (~10%) of Beamstrahlung background samples

Solenoid w/ and w/o anti-DID

Preliminary results on background rates on Tracker subsystems

- Significant rate reduction w/ anti-DID, depending on the detector
 - For VXD: negligible effect w/ anti-DID

Outlook

- Finish background analysis tool
- Simulate full samples of Beamstrahlung background
- Fine tuning of anti-DID B-field: E_{beam} dependent global scale factor
- Study different ILD detector models

Back up Slides

Previous Bkg rates Estimations for DBD

Sub-detector	Units	Layer	$TDR_ws 500 \text{ GeV}$	B1b_ws 1000 GeV
VTX-DL	$\rm hits/cm^2/BX$	1	6.320 ± 1.763	11.774 ± 0.992
		2	4.009 ± 1.176	7.479 ± 0.747
		3	0.250 ± 0.109	0.431 ± 0.128
		4	0.212 ± 0.094	0.360 ± 0.108
		5	0.048 ± 0.031	0.091 ± 0.044
		6	0.041 ± 0.026	0.082 ± 0.042
SIT	$\rm hits/cm^2/BX$	1	0.0009 ± 0.0013	0.0016 ± 0.0016
		2	0.0002 ± 0.0003	0.0004 ± 0.0005
FTD	$hits/cm^2/BX$	1	0.072 ± 0.024	0.145 ± 0.024
		2	$0.046~\pm~0.017$	0.102 ± 0.016
		3	0.025 ± 0.009	0.070 ± 0.009
		4	0.016 ± 0.005	0.046 ± 0.007
		5	0.011 ± 0.004	0.034 ± 0.005
		6	0.007 ± 0.004	0.024 ± 0.006
		7	0.006 ± 0.003	0.022 ± 0.006
SET	hits/BX	1	0.196 ± 0.924	0.588 ± 2.406
		2	0.239 ± 1.036	0.670 ± 2.616
TPC	hits/BX	-	$216~\pm~302$	$465~\pm~356$
ECAL	hits/BX	-	$444 ~\pm~ 118$	1487 ± 166
HCAL	hits/BX	-	18049 ± 729	54507 ± 923

Reference: E. Avetisyan, LC-REP-2013-002