WIMP Search and L*

Moritz Habermehl

ILD Software and Technical Meeting

Lyon 25 April 2017

WIMPs and L*

WIMP Search at the ILC

Improvements in New Analysis

BeamCal and L*

The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

- \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

- \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

- \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

SM

SM

What about Staging ?

- one a the few BSM channels for which new phase space is explored also at 250 GeV
 - centre-of-mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation
- extrapolation of sensitivity from full simulation at

SM

SM

What about Staging ?

- one a the few BSM channels for which new phase space is explored also at 250 GeV
 - centre-of-mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation
- extrapolation of sensitivity from full simulation at

SM

SM

What about Staging ?

- one a the few BSM channels for which new phase space is explored also at 250 GeV
 - centre-of-mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation
- extrapolation of sensitivity from full simulation at

Ee [GeV]

WIMP Detection at ILC

- Signal
 - WIMP pair production with a photon from initial state radiation $e^+e^- \rightarrow \chi \chi \gamma$
 - $e^+e^- \rightarrow \chi \chi \gamma$
 - quasi model-independent
 - single photon in an "empty" detector
 - \rightarrow missing four-momentum
 - observables: E_{γ} , θ_{γ}

• Main Background Processes

- Neutrino pairs $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
 - irreducible
 - polarisation: enhance or suppress
- Bhabha scattering $e^+e^-
 ightarrow e^+e^-\gamma$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

Role of Polarisation

Vector operator, /s = 500 GeV, 500 fb⁻¹, v2016

- background
 - neutrinos can be suppressed for right-handed electrons and left-handed positrons
- WIMPs
 - chirality of interaction can be tested

Status of WIMP Analysis at ILD

- Christoph Bartels, 2011
 - full detector simulation at $\sqrt{s} = 500 \,\mathrm{GeV}$
 - Whizard 1.96 with RDR beam parameters
 - ILCSoft v01-06
 - detector models: ILD_00, partially LDC_PrimeSc_01
 - interpretation: cosmological approach
- Andrii Chaus, 2014: re-interpretation: effective operators (Λ)
- Shigeki Matsumoto et al.: likelihood analysis
- me (and Tomohiko Tanabe), since 2014:
 - full detector simulation at $\sqrt{s} = 500 \, \mathrm{GeV} + \mathrm{extrapolation}$
 - Whizard 2.2.4 with TDR beam spectrum (Circe2)
 - improved reconstruction in ILCSoft v17-11
 - Bhabha phase space and new L*
 - status: waiting for final MC samples

WIMP Search and L*

WIMP Search at the ILC

Improvements in New Analysis

BeamCal and L*

Bhabha Background Suppression

$e^+e^-\gamma$	ilcsoft v01-06	ilcsoft v01-17
	Christoph Bartels	
sig.def.	100%	100%
рт	21.1%	26.1%
E _{vis}	16.0%	1.9%
BCal	0.29%	0.02%

- suppression efficiency
 - preliminary (waiting for final MC samples)
 - all normalised to signal definition of Christoph Bartels
- signal definition: minimum $p_{T,\gamma}$, minimum θ_{γ}
- selection criteria
 - veto events with track with $p_T > 3 \text{ GeV}$
 - additional visible energy < 20 GeV (PFOs)
 - no cluster in BeamCal
- from ILCSoft v01-06 to v01-17-11
 - suppression of Bhabha background profits from
 - better photon reconstruction in Pandora PFA
 - better BeamCal reconstruction using BeamCalClusterReco

- Bhabha samples used so far: Whizard (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)

 \Rightarrow at low θ : some part of BeamCal phase space is not covered

- Bhabha samples used so far: Whizard (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)

 \Rightarrow at low θ : some part of BeamCal phase space is not covered

- Bhabha samples used so far: Whizard (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_e pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)
 - \Rightarrow at low θ : some part of BeamCal phase space is not covered
- new sample with $M_{inv} > 1 \text{ GeV}$ \Rightarrow gap is closed

- Bhabha samples used so far: Whizard (1) default cuts
 - invariant mass of all possible particle pairs > 4 GeV
 - $ightarrow heta_{e} pprox 1$ DEG (on MC level)
 - (ϕ dependence due to crossing angle)
 - \Rightarrow at low θ : some part of BeamCal phase space is not covered
- new sample with $M_{inv} > 1 \text{ GeV}$ \Rightarrow gap is closed
- only now:

discovered that previous signal definition allows Bhabha events where both leptons go down the beam pipe \Rightarrow solved with new signal definition

Bhabha Background Suppression II

$e^+e^-\gamma$	ilcsoft v01-06	ilcsoft v01-17	ilcsoft v01-17	ilcsoft v01-17
	$M_{inv} > 4 GeV$	$M_{inv} > 4 GeV$	${\sf M}_{\it inv}>1{\sf GeV}$	${\sf M}_{\it inv}>1{\sf GeV}$
	Christoph Bartels	old sig def	old sig def	new sig def
sig.def.	100%	100%	235%	375%
pT	21.1%	26.1%	71.4%	161.0%
E _{vis}	16.0%	1.9%	17.6%	37.3%
BCal	0.29%	0.02%	0.40%	0.45%

• new Bhabha sample and new signal definition

- allow realistic estimate of Bhabha background
- now in good shape to study importance of forward region
- new Bhabha sample has larger cross-section
- new signal definition keeps more events
 - \Rightarrow increased signal-to-noise ratio
- BeamCal suppression: improved from 1/55 to 1/83

Bhabha Background Suppression II

$e^+e^-\gamma$	ilcsoft v01-06	ilcsoft v01-17	ilcsoft v01-17	ilcsoft v01-17
	$M_{inv} > 4 GeV$	$M_{inv} > 4 GeV$	$M_{inv}>1GeV$	$M_{inv} > 1 GeV$
	Christoph Bartels	old sig def	old sig def	new sig def
sig.def.	100%	100%	235%	375%
р _Т	21.1%	26.1%	71.4%	161.0%
E _{vis}	16.0%	1.9%	17.6%	37.3%
BCal	0.29%	0.02%	0.40%	0.45%

• new Bhabha sample and new signal definition

- allow realistic estimate of Bhabha background
- now in good shape to study importance of forward region
- new Bhabha sample has larger cross-section
- new signal definition keeps more events
 - \Rightarrow increased signal-to-noise ratio
- BeamCal suppression: improved from 1/55 to 1/83

BeamCalClusterReco: Overview

- Marlin processor: BeamCalClusterReco
- by André Sailer and Andrey Sapronov
- hermeticity in forward region crucial to identify Bhabha background
- challenge: find e^+e^- from Bhabhas in energy deposition from the overlay of low $p_{\mathcal{T}}$ pairs
- overlay (technically):
 - full detector simulation (done separately from simulation of physics sample)
 - input file: BeamCal_bg_E500-TDR_ws.root
 - option used: "Parametrised"

 \Rightarrow distribution of energy deposition described by parametrisation for each pad

BeamCalClusterReco: Criteria for Cluster

- after subtraction of the average pair background in each pad...
- ... events have to fulfill the following to be considered as Bhabha event:
 - SigmaCut:

energy in pad: $2{\cdot}\sigma$ above the average

• ETPadMin:

energy in pad has to be higher than 0.01 GeV

MinimumTowerSize:

pads in 6 consecutive layers

• StartLookingInLayer:

first layers contain most overlay

 \rightarrow ignore first layer

- parameters were tuned to find optimal values
 - minimise fakes
 - increase efficiency to find e^+e^- from Bhabhas

WIMP Search and L*

WIMP Search at the ILC

Improvements in New Analysis

BeamCal and L*

New L*

- if we want to have a realistic estimate of the Bhabha suppression in BeamCal...
- ...need BeamCalClusterReco...
- ...for which the pair background (overlay) must be fully simulated, some estimate is not enough

- new L*: BeamCal has to be moved closer to interaction point by 40 cm
 - \rightarrow need new input file for pair distribution
 - \rightarrow need new detector simulation of pairs
- simulation currently done by Alejandro Perez Perez

Sensitivity Depends on Forward Detector Design

- How does the number of missed Bhabhas change if BeamCal is moved along the z axis ?
- for now: geometrical estimate
- idea: apply a hard theta cut: inside nothing is reconstructed, outside everything
- which θ_{eff} cut mimics the BeamCal reconstruction: 8.62 mrad
- θ_{eff} grows when BeamCal is moved closer to IP: 9.74 mrad

Summary

- mono-photon channel is general approach to WIMP search
- largest reducible background: Bhabha scattering
- Bhabha background and hence entire analysis depend heavily on design of forward region
- influence of new L*
 - geometrical estimate
 - Bhabha level goes up by factor 2
 - sensitivity to new physics is estimated to drop by few %
- new samples are underway
 - complete Bhabha phase space
 - larger signal definition
 - will allow realistic study of new L*

Sensitivity as a Function of the Bhabha Background

Signal Definition and Preselection Cuts

- preselection cuts on generator level
 - reduce phase space
 - safety margin

	signal definition	preselection
avoid Z return	${\sf E}_\gamma <$ 220 GeV	-
tracking	$ \cos(heta_\gamma) < 0.996$	$ \cos(heta_\gamma) < 0.9975$
	(heta > 5.13DEG)	(heta > 4.05 DEG)
distinguish from noise,	$p_{T,\gamma} > 2 \text{ or } > 5 \text{ GeV}$	1 GeV
ensure Bhabha detection	(in BCal coordinates)	

- θ in preselection: just inside beam pipe
- p_T cut is ϕ -dependent:
 - $|\phi_{\gamma}| < 35$: $p_{T} > 5.71 \,\text{GeV}$ (corresponding e^{\pm} on "incoming" side)
 - $|\phi_{\gamma}| > 35$: $p_T > 1.97 \text{ GeV}$ (corresponding e^{\pm} on "outgoing" side) Moritz Habermehl | WIMPs and L* | ILD Meeting | Lyon | 08 Mar 2017

Higher Sensitivity with Improved Bhabha Rejection

lower Bhabha background than in previous ILD analysis (A.Chaus)

sensitivity is improved by 300 GeV $\stackrel{_\frown}{=}$ by 15% for right-handed electrons and left-handed positron

for "vector" operator, $\sqrt{s} = 500$ GeV, 500 fb⁻¹

20

LHC vs. ILC

LHC

- tests couplings to quarks/gluons
- sensitive to higher M_{χ}

ILC

- tests coupling to leptons
- sensitive to higher Λ
- low systematic uncertainties of BG
- no pile-up, no beam remnants
- polarisation
- \Rightarrow signal can be enhanced
- \Rightarrow background can be suppressed

type of interaction can be tested

- well known initial state \Rightarrow allows to calculate M_{χ}

BeamCalClusterReco: Reconstruction Efficiencies

