Hadron Production in Photon-Photon Processes at the ILC and the BSM signatures with small mass differences

ILD Software and Technical Meeting

Swathi Sasikumar, Jenny List, Mikael Berggren 24-28th April 2017

Motivation

- > DBD simulations for $\gamma\gamma \rightarrow$ low pt hadron events
- > Changes and improvements in $\gamma\gamma \rightarrow$ low pt hadron event generators
- > Reconstruction efficiency for $\gamma\gamma \rightarrow low$ pt hadron events
- > Possible methods to remove the $\gamma\gamma$ overlay

Summary and Outlook

Motivation

- Low AM higgsino analysis studied by Hale Sert DESY-THESIS-2016-001
- > The case was studied at two benchmark scenarios

 $\Delta M(\tilde{X}_1^\pm,\tilde{X}_1^0)$ = 770 MeV - dM770

 $\Delta M(\tilde{X}_1^\pm,\tilde{X}_1^0)~$ = 1.6 GeV - dM1600

- > The mass of \tilde{X}_1^{\pm} could be reconstructed with a precision 2 GeV dM1600 and 1.5 GeV dM770 and for \tilde{X}_2^0 3.3 GeV dM1600 and 1.6 GeV dM770
- The mass difference between the chargino and LSP estimated from energy of decay products of charginos with 270 MeV(dM1600) and 40 MeV(dM770) precision

Motivation

- Hale's study showed that such scenarios can be well observed at the ILC
- > Visible decay products very soft and thus similar to $\gamma\gamma \rightarrow$ low pt hadron backgrounds
- > The study performed without the inclusion of $\gamma\gamma$ overlay
- Important to study the effect of overlay on the higgsino events

DBD simulations for $\gamma\gamma \rightarrow$ low pt hadron events

- In DBD simulations:
 - Overlaid number of $\gamma\gamma$ events on each physics event (1.7 evnts/BX)
 - $\gamma \gamma \rightarrow \text{low } p_T$ hadron event generation by Tim Barklow
 - $\sqrt{s_{\gamma\gamma}}$ < 10 GeV dedicated generator by Tim (Barklow generator)
 - + $\sqrt{s_{\gamma\gamma}}$ > 10 GeV Pythia
- > Removal of $\gamma\gamma$ backgrounds by applied k_T algorithm method
- In most of the cases k_T algorithm method a success to regain the physics performance
- Analysis for higgsinos still an exception to k_T algorithm method the low pt visible decay products misidentified as γγ overlay in exclusive mode and discarded

Monte-Carlo generator for $\gamma\gamma \rightarrow low Pt$ hadron processes

10³

- Until recently a very simpler version of Barklow generator was used - no neutral mesons, no natural width for rho
- $\sqrt{s_{\gamma\gamma}}$ < 10 GeV Barklow generator
- $\sqrt{s_{\gamma\gamma}}$ > 10 GeV Pythia
- >Pythia generator better than Barklow generator
- >Pythia cannot generate events below 2 GeV
- Energy cutoff for Pythia changed from $\sqrt{s_{\gamma\gamma}}$ > 10 GeV to $\sqrt{s_{\gamma\gamma}}$ > 2 GeV
- $\sqrt{s_{\gamma\gamma}}$ < 2 GeV Barklow generator
- $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia

Pvthia Barklow

20

20

Event Properties of old and new Barklow generator

- Improvements implemented in Barklow generator for $\sqrt{s_{\gamma\gamma}}$ < 2 GeV</p>
- > Event Properties before improvements:
 - Barklow generator produced $\gamma\gamma \rightarrow$ low Pt hadron processes with very simple events

$$\pi^+\pi^+$$

 $\pi^\pm
ho^\pm$
 $ho^+
ho^-$

- No neutral mesons included no ho^0 or π^0
- > Event Properties after improvements:
 - The Barklow generator produces different events like

$$\gamma\gamma \rightarrow \pi^0\pi^0, \pi^\pm, \rho^0\rho^0, \rho^\pm, \omega$$

• The cross-sections for producing ρ^0 is greater than that for ρ^{\pm}

Event Properties of old and new Barklow generator

- > PDG: m_{ρ} = 770 MeV and Γ_{ρ} = 145 MeV
- > Before improvement:
 - Barklow generator produced rho meson without natural width - peaked at 770 MeV
- > After improvement:
 - The improved generator now produces rho mesons with full natural width

Cross sections for Barklow generator events

- > Barklow generator events takes relative cross sections for different processes from different sources
- Measured cross sections from different experiments like Argus, Crystal Ball and other e⁺e⁻ experiments at PETRA and PEP
- For each process \u03b3/s dependence for the cross section is used to determine relative weights of different processes at given Ecm
- The sources of cross sections for different processes are different from that used in old generator
- The cross sections for single processes have changed than before but the total cross section remains the same
- To do:
 - Recheck folding of total cross section with luminosity spectrum
 - + $\gamma\gamma$ luminosity calculated wrongly in DBD 1.7 events/BX
 - Average number of events per BX to 1.2 events

Reconstruction efficiency for tracks

- ILD performance -Diagnostics package used for tracking efficiency
- https://confluence.desy.de/display/ ILD/Reconstruction#Reconstruction-ILCSoftv01-19-01preandILDConfig_HEAD
- Tracking Efficiency of the detector studied with detector model -ILD-o2-v05 and ILCsoft version v01-17-11
- > Reconstruction efficiency for $\gamma\gamma \rightarrow$ low pt hadron events is consistent with the reconstruction efficiency for $t\overline{t}$ events
- > Important to develop method to remove $\gamma\gamma \rightarrow \text{low pt hadron events}$

Possible methods to remove $\gamma\gamma \rightarrow \text{low pT}$ hadrons

> First Method:

- > Displacement of vertices in z direction 300 μ m bunch length
- > Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- Identifying the tracks coming from such vertices and removing them would be an effective method
- > This method cannot be used for purely neutral events like $\pi^0\pi^0$
- Second method:
- > The invariant mass of decay products of rho meson gives rho mass
- > Rho meson used as a tag to remove $\gamma\gamma$ events
- > Could be applied on very small event number

Method Development to remove backgrounds

- > Primary step separating events as in table
 - Pythia events complex 55 % events good chances for finding vertex
 - Only Separating Barklow events as below 45 %

Processes	No. events [%]	Methods to tackle
$\gamma\gamma \to \pi^+\pi^-$	33.43 %	displaced vertices
$\gamma\gamma o \pi^0\pi^0$	5.68 %	only photons 🙁
$\gamma\gamma \to \rho^+ \rho^-$	1.26 %	displaced vertices & rho tag
$\gamma\gamma ightarrow ho^0 ho^0$	2.68 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 \omega$	0.7 %	displaced vertices & rho tag

Method - Displaced vertices for $\gamma\gamma\,$ events

 $\sigma_{z_{-vtx}}$ [µm] > Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices in z 50 z_vtx resolution studied for vertices having 40 2 or greater than 2 tracks associated . 30 With increasing number of tracks(PFO's) . 20 in the primary vertex the resolution for • ŧ vertex z position gets better 10 12 2 10 4 6 8 For 60% of the events - z vtx resolution ~ $N_{PFO's}$ 50 μ m or better Entries [%] 20 40% events - either neutral events or events with 1 track 15 # 10 . 5 0 2 6 8 10 12 4 Swathi Sasikumar | Hadron Production in photon N_{PFO's}

Method - Using Rho meson tag

> $\gamma\gamma \rightarrow \rho^{0}\rho^{0}$ events - rho meson decay to two π^{+} and two π^{-} (2.68 %)

- Events with exactly 2 ^{+ve} and 2 ^{-ve} tracks selected
- Invariant mass calculated from two different combinations
- mass closest to rho meson chosen and plotted
- The pion combinations give rho mass 770 \pm 145 MeV
- Only 0.54% events reconstructed exactly as 2 ^{+ve} and 2 ^{-ve} tracks

Summary and Outlook

- Although physics environment at ILC is very clean \(\gamma\) backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma \rightarrow$ low pt hadrons was developed with more realistic particle contents for events
- Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- > Work in progress!!
- > OUTLOOK:
 - The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of $\gamma\gamma$ overlay

Questions??

Event Properties of Pythia

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a $q\bar{q}$ pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

Pythia cannot simulate below 2 GeV

Photon Sources

> e⁺ e⁻ beams are accompanied by :

> Real photons fr(x):

 Beamstrahlung - emission of real photons in high electrical field of oncoming bunch

> Virtual photons f_v(x):

 Weizsaecker-Williams process - emission of virtual photons which can interact with an oncoming photon or an electron

Cross sections for Pythia events

- ➤ Comparison of \(\gamma\) \(\rightarrow \) low Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP,PETRA and VEPP
- > $\sqrt{s_{\gamma\gamma}}$ > 10 GeV : Good description of LEP data with Pythia
- > $\sqrt{s_{\gamma\gamma}}$ < 10 GeV: Measurements have large uncertainties and widespread
- > Pythia event properties studied in detail for better understanding

Photon-Photon Interactions

- > Photons interact in different ways
- Vector meson dominance -Most dominating subprocess
- > What are vector mesons? $\rho, \omega, \phi, J/\psi, \Upsilon$
- Photon fluctuates into a vector meson since it has got the same quantum properties
- Photon is a hadron 1/400 of the time
- > Highest probability to fluctuate into rho meson
- Production of huge amount of low Pt hadrons

Does $\sqrt{s_{\gamma\gamma}}$ < 1 GeV matter?

- > Detector acceptance for $\sqrt{s_{\gamma\gamma}}$ <1 GeV
 - Select events $\sqrt{s_{\gamma\gamma}} < 1 \text{ GeV}$
 - Events generated from real-real, realvirtual and virtual-virtual photon collisions
 - Simulate ILD in SGV fast simulation
- > Reconstruction in SGV
 - Particles having \geq 3 layer hits : "Charged"
 - Particles hitting calorimeter : "Neutral"

Ref: archiv:1203.0217v1

Event Properties of Pythia

Momentum acceptance for Pions

> Momentum acceptance:

- Dividing seen stable pions with all true pions
- The acceptance for most particles > 80%
- Particles with high Pt but moving in forward direction - low acceptance

23

A dedicated event generator for $\gamma\gamma$ processes

- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma \rightarrow \text{ low pT hadron processes}$
- Below 2\(\pi_m\) pure QED beam-beam interactions modeled by dedicated programs -Guinea Pig
- Need to evaluate the impact of uncovered region - how can it be modeled?
- Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- The particles below 2 GeV Very low Pt
- Could these particles be observed in the detector?
- > How important is it to model this area?

Angular acceptance for Pions

> Angular acceptance:

- Dividing seen stable pions with all true pions
- The acceptance for most particles > 80%
- Particles with high Pt but moving in forward direction - low acceptance

25

Momentum acceptance of pions with full simulation

- Cross checked the results with full simulation
- $\sqrt{s_{\gamma\gamma}} < 2$ acceptance for pions at GeV
- Acceptance reasonable enough to > model the region below 2 GeV
- Work under progress to confirm > the results

Modeling the low energy regime

- The issues discovered studied and conveyed to the author
- As expected from Chiral sum rule and Regge theory the generator now produces large variety of events
- > The cross-sections for producing ρ^0 is greater than ρ^\pm
- A better version of the generator was thus developed correcting the issues in older version- big progress!!!

