

RTML Emittance Studies

PT SLAC

20 July 2006

Global Design Effort

1

- Single-pass transfer line from the damping *R*ings *T*o the *M*ain *L*inac
 - Duh!
 - But does not include single-pass Damping Ring Extraction (DRX) line
- Optical modules in S order:
 - Skew correction
 - Collimation + Feed-forward measurement
 - Turnaround
 - Spin Rotation
 - Feed-forward correction + Emittance measurement
 - Two-stage bunch compressor including acceleration from 5 GeV to ~15 GeV
 - Emittance measurement + matching into main linac
 - Plus two pulsed extraction lines
 - After BC1 10% power (220 kW)
 - After BC2 full power (660 kW)

Obligatory RTML Footprint

20 July 2006

Global Design Effort

Obligatory RTML Twiss Parameters

Twiss functions of RTML

Global Design Effort

Luminosity Challenges in the RTML

- Vertical Dispersion
 - Misaligned quads and BPMs
 - Rolled quads in turnaround
 - Rolled bends in turnaround and BCs
 - Pitched RF cavities
- Horizontal Dispersion
 - Quad strength errors in turnaround
 - Bend strength errors in turnaround and BCs
- XY coupling
 - Rolled quads and (slightly) bends
 - Strength errors in spin rotator solenoids and quads
- Wakefields
 - Misaligned cavities and CMs, esp in BC1
- YZ coupling
 - Pitched RF cavities
- Bunch length, centroid energy, arrival time
 - RF and bend errors
- Collimator Wakefields
 - Mainly in Collimation section (Duh, again!)

Obvious Trouble Spots and their Mitigation

- Turnarounds
 - A lot of cells with very strong focusing
 - A lot of bends with strong bending
 - Normal and skew quads for disperison tuning
- Spin Rotators
 - Delicate cancellation of strong coupling from solenoids
 - Skew correction section in front of RTML
- Bunch Compressors
 - RF, with all the problems that entails
 - Strong bends
 - Normal and skew quads for dispersion tuning

What has been done so far

- Very preliminary investigations of emittance tuning upstream of BC1
 - See how well dispersion and coupling corrections really work
- Use of dispersion knobs in BC1/BC2 to tune out effects of pitched RF cavities
 - Cavities produce YZ correlation due to timevarying transverse kick
 - Also produce EZ correlation due to timevarying energy gain
 - Results in YE correlation, aka disperison
 - Reported on at LET meeting, CERN, Feb2006

RTML "Front End" Tuning

- Static Errors:
 - Quads:
 - 150 µm RMS offsets in x and y (may be possible based on FFTB experience)
 - 0.25% strength errors (based on FFTB experience)
 - 300 µrad rotation errors (tough!)
 - Bends:
 - 0.5% strength errors (a bit better than in FFTB)
 - 300 µrad rotation errors (tough!)
 - BPMs:
 - Perfect resolution so far
 - Two different models of offsets
 - 150 µm RMS offsets to survey line, or
 - 70 µm RMS offsets to nearest quad
 - » Based on FFTB fiducialization experience
 - No rotations or scale errors yet

- Laser Wire Scanners:

- Entirely perfect devices so far
- This entire region in room-temperature, so alignment tolerances which are tighter than the linac's can be met

A Reminder: Emittance Budget

- DR extracted emittance specification is 20 nm
- IP emittance specification in nominal parameters is 40 nm
 - Smaller in some parameter sets as small as 30 nm!
- Exact budget for each region unknown
 - Probably not bad to use last known NLC budget:
 - 4 nm (20%) RTML
 - 10 nm (50%) ML
 - 6 nm (30%) BDS
- Is that a mean budget?
 - Probably not! Distribution generally has a long tail which goes out to several times the mean
 - For safety, may want to use 90% CL

- Start with y offsets of BPMs and quads only
- First thing you would think to do: steer flat and then use dispersion knobs on wires
 - Painful discovery: phase advance between knob quads and wire is important!
 - Phase of 90° optimal
 - Phase of 0° useless
 - Intermediate phases can be problematic
 - Expect that 2 sets of knobs at 45° and 135° should be just as good as knobs at 0° and 90°
 - Not true! If $\alpha_y \neq 0$ at wire, knob-to-wire phase far from 90° results in optimization getting the wrong answer!
 - In this system, knobs are in fact about 45° out of phase with wires
 - » Constructed "knob of knobs" linear combination of knobs with correct phase advance to wire scanners

- Can use a variant of Kubo's Method (aka Kick Minimization) to improve steering results
 - If BPMs were known to be perfect but quads misaligned, we would steer to zero BPMs and ignore corrector strengths
 - If quads were known to be perfect but BPMs misaligned, we would steer to zero correctors and ignore BPM readings
 - Since both BPMs and quads are misaligned, we should constrain *both* in the steering solution
 - Set up a least-squares steering which constrains BPMs to 150 µm RMS offsets, and correctors to field equivalent to 150 µm RMS quad offsets
 - Each corrector constrained based on nearest quad
 - Only done in case with BPMs misaligned wrt survey line BPMs aligned to quads is more complicated and I was in a hurry

KM + Knobs Method

Mean after steering 64 nm, mean after knobs 24 nm!

Global Design Effort

Emittance after steering \rightarrow 87 nm, emittance after knobs \rightarrow 31 nm

- With just quad and BPM errors, the relative weight between BPM and corrector constraints was right
- With additional errors, it was no longer correct
 - Need to err on side of more corrector strength
 - May have caused some of the growth in emittance after steering
- After knobbing, expected ~27 nm emittance
 - Knobs usually take out 90% of emittance growth
 - Got 31 nm additional 4 nm from xy coupling?
 - Need to learn how to use decoupling knobs in RTML launch!

Emittance From Pitched Cavities

- Test of Walker's Hypothesis
 - Namely that dispersion correction can take out emittance growth from this source
 - Rationale already discussed
 - YZ coupling + EZ coupling = YE coupling
 - Used pre-RDR 2-stage compressor lattice
 - Scanned each of 4 dispersion knobs, measured projected emittance, found minimum of parabola, went there
 - Reported at February LET meeting
 - Nothing new since then
 - Note that simulation of "measurement" quite different from study of turnaround knobs – should repeat with wisdom learned from that experience

Δγε_y [nm] Global Design Effort

20 July 2006

- Emittance Growth in RTML is a serious issue
- Neither of the effects studied to date are under control to our satisfaction
- There is a lot of work to be done!