

LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerator

Upcoming Change Requests Benno List, DESY

TCMB Meeting 22.2.2017

LINEAR COLLIDER COLLABORATION What is the TCMB's Role?

- Make sure that the technical design of the ILC stays sound
- Make sure that the design is still based on an international consensus and supported by the international community
- Advice the ILC director

How do we achieve that?

- Demand that changes to the baseline design are documented as Change Requests
- Make sure that Change Requests are properly reviewed by a Change Review Panel
- Decide on Change Requests based on CRP recommendation
- Make sure that Change Requests are distributed to share holders (esp. P&D)

Constraints

- TCMB members have limited resources to perform studies / conduct work
- TCMB will be sort of an advisory panel
- Handle administrative tasks for Change Requests outside TCMB meeting (Benno will continue to serve as Change Administrator)

LINEAR COLLIDER COLLABORATION Where are We Heading?

- Conclusion from Morika seems to be:
 - We are heading for an initial 250GeV stage (saves ~25-30% cost)
 - We have to save money on top of staging -> higher gradient goal

My beliefs:

- The International ILC Community (the LCC) has to give a consistent message
- The LCC should work out a proposal for a 250 GeV stage that is
 - Financially acceptable for the funding agencies (primarily MEXT, but not only)
 - Appealing to and supported by the international experimental community
 - A consensus among the accelerator community
- This proposal needs to be defined by summer 2017

What to Do

- Formulate the proposal ahead of ALCW2017
- Form the consensus in Santa Barbara
- Write a Report!

LINEAR COLLIDER COLLABORATION Cryomodule Performance

- A.k.a. "new gradient goal" (31.5 -> 35MV/m?)
- Specify: New performance goal for cavities in cryomodules during beam op.
- Needs more than a single number:
 - Gradient in vertical test stand <-> assumption about performance loss in cryomodules
 - Q0 at operating gradient
 - Goal for fabrication cost (same as TDR?)
 - Goal for yield and acceptable gradient spread (stick to +/- 20%?)
 - Goal / strategy for tests
- Higher gradient goal is higher risk -> have to specify a risk mitigation strategy
 - Build to performance (target gradient) whatever the cost **versus**
 - Build to cost (target yield) and have room for addt'l modules
- New gradient goal is basis for all further studies -> need a consensus asap
- Basis for shorter tunnel
- Lots of technical implications (cryo load, klystron power, modulators, couplers)
 - -> implications on top level parameters (bunches, current -> luminosity!)
- Who formulates a new gradient consensus?

LINEAR COLLIDER COLLABORATION 250GeV Staged Machine Parameters

- Formulate a set of top-level parameters for a 250GeV stage
- TDR baseline set refers to 500GeV machine running at half gradient -> this is different!
- Consider a minimal machine (initial set up) plus a lumi upgrade
- Urgently needed by physics group
- Specify:
 - Beam energy, luminosity
 - Bunch charge, pulse length, current etc
 - Assumed IP characteristics (beta*, emittance, beam disruption,...) -> see "New Damping Ring Parameters"
- Develop some luminosity upgrade scenario, e.g.
 - install more klystrons, more cryo power, build 2nd positron DR -> double bunches per pulse -> double lumi
 - Install even more cryo and go to higher rep-rate?
 - Generally: buy equipment needed for 500GeV energy upgrade anyway
- Upgrade scenario puts constraints on initial configuration (extendability) -> layout of Main Linac, space for more cryo power

LINEAR COLLIDER COLLABORATION 500GeV High-Level Parameters

- Choice of new gradient will affect either/or
 - Top level parameters: bunch charge, number of bunches, pulse length OR
 - Power consumption (HLRF, cryo, fill time, etc)
 - Cryogenic Power calculation
- These Documents are the basis for the specification of all subsystems, such as
 - Positron source
 - Damping rings
 - Cryo plants
 - Cryomodules, klystrons, couplers...
- Also: Top level parameter list should contain entries for lumi upgrades that correspond to H-20 scenario used by physics group
- And: Check if goals for emittance at IP may be adjusted (-> DR parameters)

LINEAR COLLIDER COLLABORATION Top-Level Parameters (D*925325)

General Parameters			TF = Trave	ing rocus							
								L Upgrade	E _{cm} Up	_	
Centre-of-mass energy	E _{cm}	GeV	200	230	250	350	500	500	1000	1000	comment
n n	r	C 11	100	11.5	100	100	250	500	A1 500	Blb	
Beam energy	E_{beam}	GeV	100		125		250	500		500	
Lorentz factor	γ		1.96E+05	2.25E+05	2.45E+05	3.42E+05	4.89E+05	4.89E+05	9.78E+05	9.78E+05	
Collision rate	f_{rep}	Hz	5	5	5	5	5	5	4	4	
Electron linac rate	f_{linac}	Hz	10	10	10	5	5	5	4	4	
Number of bunches	n_b		1312	1312	1312	1312	1312	2625	2450	2450	
Electron bunch population	N.	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
Positron bunch population	N_+	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
Bunch separation	Δt_b	ns	554	554	554	554	554	366	366	366	
Bunch separation ×f _{RF}	$\Delta t_b f_{RF}$	-	720		720		720	476	476	476	
Pulse current	I _{beam}	mA	5.8		5.8		5.79	8.75	7.6	7.6	
Puise current	1 beam	III/X	3.6	5.0	3.0	5.0	3.79	6.73	7.0	7.0	
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.250	0.225	
Electron RMS energy spread	$\Delta p/p$	%	0.206	0.194	0.190	0.158	0.124	0.124	0.083	0.085	See EDMS D*971945
Positron RMS energy spread	$\Delta p/p$	%	0.190	0.165	0.152	0.100	0.070	0.070	0.043	0.047	See EDMS D*971945
Electron polarisation	P.	%	80	80	80	80	80	80	80	80	
Positron polarisation	P +	%	31	31	30	30	30	30	20	20	Approximate numbers (Wanming Liu)
Horizontal emittance	yε _x	μm	10	10	10	10	10	10	10	10	TeV numbers are potentially too optimistic. Check with K.Kubo.
Vertical emittance	γεγ	nm	35	35	35	35	35	35	30	30	TeV numbers are potentially too optimistic. Check with K.Kubo.
IP horizontal beta function	β _x *	mm	16.0	14.0	13.0	16.0	11.0	11.0	22.6	11.0	
IP vertical beta function (no TF)	β_y^*	mm	0.34		0.41	0.34	0.48	0.48	0.25	0.23	
IP RMS horizontal beam size	σ_x^*	nm	904	789	729	684	474	474	481	335	
IP RMS veritcal beam size (no TF)	σ_y^*	nm	7.8		7.7		5.9	5.9	2.8	2.7	
Horizontal distruption parameter	D_x		0.2	0.2	0.3	0.2	0.3	0.3	0.1	0.2	
Vertical disruption parameter	D_{v}		24.3		24.5		24.6	24.6	18.7	25.1	
Horizontal enhancement factor	H_{Dx}		1.0		1.1		1.1	1.1	1.0	1.0	
S Vertical enhancement factor	H_{Dv}		4.5	5.0	5.4		6.1	6.1	3.5	4.1	
E Total enhancement factor	H_D		1.7	1.8	1.8		2.0	2.0	1.5	1.6	
6 Geometric luminosity	L_{geom}	×10 ³⁴ cm ⁻² s ⁻¹	0.30		0.37		0.75	1.50	1.77	2.64	

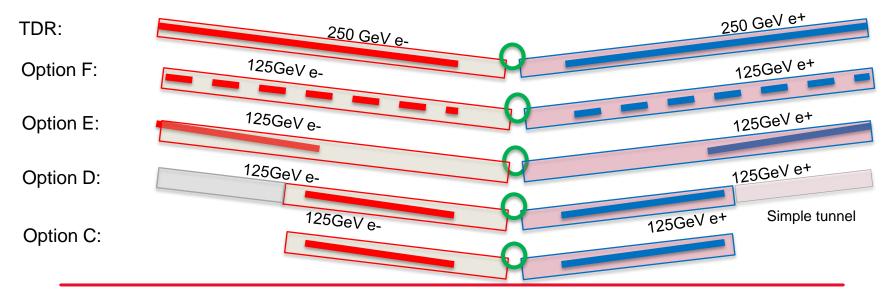
LINEAR COLLIDER COLLABORATION Power Consumption (D*965055)

AC Pow	er															
Scaling for	or low centre of mass	running (includ	ling 10Hz)													
Updated	19/03/2013		<u> </u>													
Initial beam er	15	GeV														
			TDR Baseline													1
			Reference (KCS)	Baseline (scaled)	E	aseline (sca	aled)			Baseline (sc	aled)		E	Baseline (sc	aled)	
	Ecm	GeV	500	350		250				230				200	,	1
					6+	e- (lumi)	e- (e+ prod)	Totals	6+	e- (lumi)	e- (e+ prod)	Totals	6+	e- (lumi)	e- (e+ prod)	Total
	Gradient	MV/m	31.5	21.4	14.7	14.7	18.1		13.4	13.4	18.1		11.4	11.4	18.1	
	Q0		1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10		1.0E+10	1.0E+10	1.0E+10		1.0E+10	1.0E+10	1.0E+10	
	Energy gain	Gev	4/0	320	110	110	135		100	100	135		85	85	135	
	Rep. rate	Hz	5	5	5	5	5		5	5	5		5	5	5	
	Linac length factor		1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0	
		- 40														-
	Particles per bunch	x10 ¹⁰	2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.0	
	Number of bunches		1312	1312	1312	1312	1312		1312	1312	1312		1312	1312	1312	
	Average beam power (dump)	MW	10.5	7.4	2.9	2.9	3.5		2.7	2.7	3.5		2.4	2.4	3.5	
	$\Delta t_b^{\bullet} f_{DR}$		360	360	360	360	360		360	360	360		360	360	360	
	Δŧ,	ns	553.8	553.8	553.8	553.8	553.8		553.8	553.8	553.8		553.8	553.8	553.8	
	Beam pulse	us	726.6	726.6	726.6	726.6	726.6		726.6	726.6	726.6		726.6	726.6	726.6	1
	Beam current	mA	5.79	5.79	5.79	5.79	5.79		5.79	5.79	5.79		5.79	5.79	5.79	
	Matched Q	XIU	5.5	3.7	2.6	2.6	3.1		2.3	2.3	3.1		2.0	2.0	3.1	
		us	925.9	630.4	433.4	433.4	531.9		394.0	394.0	531.9		334.9	334.9	531.9	
	RF pulse length	ms	1.65	1.36	1.16	1.16	1.26		1.12	1.12	1.26		1.06	1.06	1.26	-
	RF to beam P eff.	IIIS	44%	54%	63%	63%	58%		65%	65%	58%		68%	68%	58%	1
	Kr to beam r en.		4476	5476	0376	0376	3076		0376	0076	3070		0070	0076	3076	+
RF	2x average linac beam power	MW	9.88	6.73	2.31	2.31	2.84	7.46	2.10	2.10	2.84		1.79	1.79	2.84	1
		MW	22.5	12.6	3.7	3.7	4.9		3.2	3.2	4.9		2.6	2.6	4.9	
	AC-RF Efficiency		39%	39%	39%	39%	39%		39%	39%	39%		39%	39%	39%	
	Total RF AC power	MW	58.1	32.5	9.5	9.5	12.7	31.8	8.4	8.4	12.7	29.5	6.8	6.8	12.7	26.2
	Total efficiency		17%	21%	24%	24%	22%		25%	25%	22%		26%	26%	22%	
	RF power dumped	MW	48.2	25.8	7.2	7.2	9.9	24.3	6.3	6.3	9.9	22.4	5.0	5.0	9.9	19.8
Cryo	Static cryo power	MW	11.2	11.2		11.2				11.2				11.2		
	RF load		13.8	5.2	1.0	1.0	1.7		0.8	0.8	1.7		0.6	0.6	1.7	
	Input coupler		3.8	2.0	0.6	0.6	0.8		0.5	0.5	0.8		0.4	0.4	0.8	
	HOM coupler		1.0	1.0	0.5	0.5	0.5		0.5	0.5	0.5		0.5	0.5	0.5	-
	HOM absorber		0.3	0.3	0.2	0.2	0.2		0.2	0.2	0.2		0.2	0.2	0.2	-
	HOM (cavity)		1.0	1.0	0.5	0.5	0.5		0.5	0.5	0.5		0.5	0.5	0.5	-
	Beam tube bellows		0.6	0.2	0.0	0.0	0.1		0.0	0.0	0.1		0.0	0.0	0.1	-
	Gfac		8.73E-04	3.29E-04	1.32E-04	1.32E-04	2.16E-04		1.05E-04	1.05E-04	2.16E-04		7.14E-05	7.14E-05	2.16E-04	

LINEAR COLLIDER COLLABORATION Cryomodule Heat Loads (D*94395)

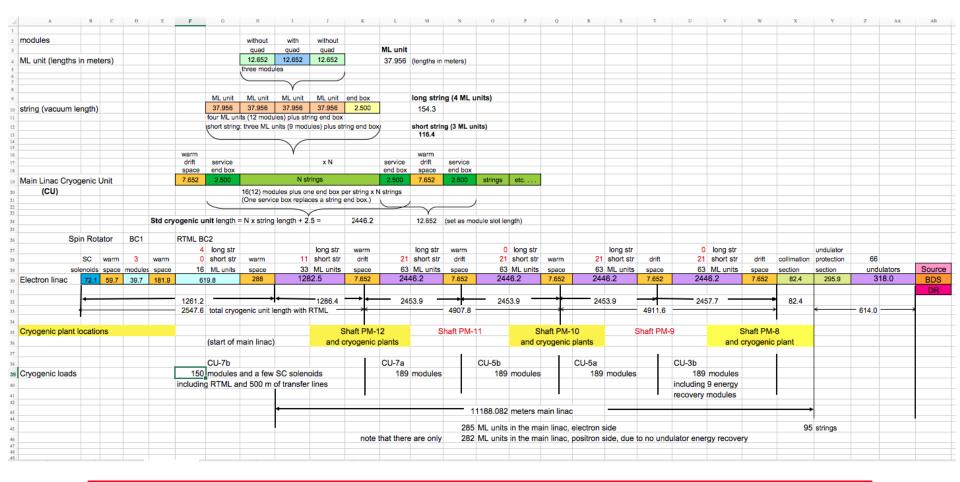
Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	X			
	Tom Peterson																			-			-			
	Revised for TDP parameters	26 June 20	012																							
	Iteration of this heat load tal	ole with inpu	t from Chri	s Adolphse	n, 5 Jan 07	,								10 Hz LF	KCS e- (e	- source b	aseline)									
	TESLA numbers provide basis for scaling, RDR nur					RDR numbe	rs for refer	ence				positro	n beam	positron p	roduction	electron	n beam									
	Cryomodule	TES	LA	ILC 9-8-9	(RDR)			TDR M L	inac KCS	TDR M L	inac DKS	5 Hz LP	KCS e+	1/2 of 10 Hz	LP KCS e-	1/2 of 10 Hz	LP KCS e-	ILC 9-8-9 refers to the number of cavities in	the module	s in a ML u	nit					
	E, [MV/m]	23	.4	31	.5	31	.5	31	.5	3	1.5	24	1.1	23	.7	23	.7	G								
	Q 1.E+10 1.E+10			1.E-	+10	1.E	+10	1.E	+10	1.E-	+10	1.E-	+10	1.E+	-10											
	Rep rate, [Hz]		5	5					5		5		5		5	5										
	Number of Cavities	1	2	8.6	67	8.6	67	8.6	67	8.0	667	8.0	100	8.0	00	8.0	00	avg number of cavities per module								
	Fill time [usec]	42	20	59	97	59	7	9	24	9	24	47		46	33	46		Tf			Mar-08	after RDR				
	Beam pulse [µsec]	95	50	96	9	96	9	7	27	7	27	72	27	72	7	72	7	Tb		S	ubstitute th	e data bel	ow			
	Number of bunches	28	20	26	70	26	70	13	12	13	312	13	12	13	12	13	12	Nb		fi	or the TESI	A TDR n	umber			
	Particles per bunch [1e10]	2	2	2.0	04	2.0)4	2.	00	2.	.00	3.0	00	3.0	00	3.0	10	Qb		С	Coupler data	a from Lin	ac 200			
	Beam current (mA)	9.5	51	9.0	00	9.0	00	5.	80	5.	.80	8.3	70	8.70		8.7	o				y W-D Mo					
	Gfac			2.0		2.0	9	2.	2.24 2.24		24	0.94		0.0	90	0.90		Stored Energy Factor = G^2*(Tb + 1.1*Tf)			•		70 K			
	Pfac			1.5	54	1.5	54	1.	18	1.	.18	0.0	87	3.0	35	3.0	15	Input Power Factor = G*(Tb + 2*Tf)*Cfac		0 power	0.02	0.20)			
	Bfac			0.9	99	0.9	19	0.	46	0	46	1.0	04	1.0	04	1.0		Bunch Factor = Nb*Qb^2		TESLA	0.06	0.50)			
	Cfac			0.9	95	0.9	95	0.	61	0	.61	0.9	91	0.9	91	0.9	н	Beam Current Factor = Qb*Nb/Tb	y conclusio	n net dyn	0.04	0.30)			
		Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dynamic	Static	Dvnamic		,							
	Temperature Level	2	,	21	•	2	,	2	•		2K	2	•	21	•	21	-									
	RF load		4.95		7.46		7.46		8.02		8.02		3.09		2.97		2.97	Dynamic load scaled by the number of cavit	ies and Gfa	c						
	Supports	0.60		0.60	_	0.60	_	0.60	-	0.60	-	0.60		0.60	-	0.60	-	Assume independent of number of cavities								
	Input coupler	0.24	0.48	0.55	0.16	0.17	0.53	0.17	0.41	0.17	0.41	0.16	0.28	0.16	0.27	0.16	0.27	Static load scaled by number of cavities, dy	namic by Pf	ac also						
	HOM coupler (cables)	0.01	0.27	0.01	0.18	0.01	0.18	0.01	0.12	0.01	0.12	0.01	0.16	0.01	0.16	0.01	0.16	Static and dynamic load scaled by number of	of cavities, o	ynamic by	Cfac also					
	HOM absorber	0.14	0.02	0.14	0.02	0.14	0.02	0.14	0.01	0.14	0.01	0.14	0.01	0.14	0.01	0.14	0.01	Dynamic load scaled by Bfac								
	Beam tube bellows		0.24		0.36		0.36		0.39		0.39		0.15		0.14		0.14	Dynamic load scaled by the number of cavit	ies and Gfa	c						
	Current leads	0.04		0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	1.70	1.70	0.57	0.57	0.57	0.57	For ML weigh by a factor of 1/3 since only 1	y 1 in 3 modules have quads**							
	HOM to structure		1.68		1.20		1.20		0.56		0.56		1.17		1.17		1.17	Static load scaled by the number of cavities,	dynamic b	y Bfac also						
	Coax cable (4)	0.05		0.05		0.05		0.05		0.05		0.05		0.05		0.05		Assume indepent of number of cavities								
	Instrumentation taps	0.07		0.07		0.07		0.07		0.07		0.07		0.07		0.07		Assume indepent of number of cavities								
	Scales as Gfac		5.19		7.83		7.83		8.41		8.41		3.24		3.11		3.11									
	Scales as Pfac		0.48		0.16		0.53		0.41		0.41		0.28		0.27		0.27									
	Independent of G,Tf	1.15	1.97	1.70	1.68	1.32	1.68	1.32	0.97	1.32	0.97	2.73	3.05	1.60	1.92	1.60	1.92									
	Static, dynamic sum	1.15	7.64	1.70	9.67	1.32	10.04	1.32	9.79	1.32	9.79	2.73	6.57	1.60	5.30	1.60	5.30	Total for 9-8-9 TDR KCS RF unit below	Total fo	r one cavity	below					
	2K Sum [W]	8.8		11	.4	11.4		11	.1	1	1.1	9.	.3	6.	9	6.	9	33.33	0.99	1.282						
		5K		51	K	5	K	5	K	5	iK	5	K	5	K	51	<									
	Radiation	1.95		1.41		1.41		1.41		1.41		1.30		1.30		1.30		Static load scaled by number of cavities								
	Supports	2.40		2.40		2.40		2.40		2.40		2.40		2.40		2.40		Assume indepent of number of cavities								
	Input coupler	2.40	3.60	1.48	1.32	1.73	4.00	1.73	3.06	1.73	3.06	1.60	2.10	1.60	2.04	1.60	2.04	Static load scaled by number of cavities, dy	namic by Pf	ac also						
																			of cavities, dynamic by Cfac also							

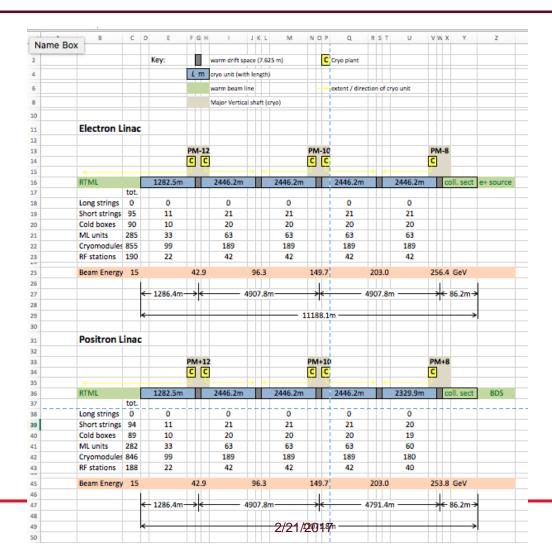
LINEAR COLLIDER COLLABORATION Cryogenic Power (D*94395)



	A	В	С	D	E	F	G	Н	I	J	K	L
1	Tom Peterson		ILC Cr	yogenic Power Estir	nates							
2	26-Jun-12			_								
3	This sheet:	TDR Power	DKS									
4		1 standard o	ryogenic unit with	DKS arrangement i	nto cryo strings and	d cryo units						
5		Heat loads p	er attached CM_F	leatLoad sheet (she	et 1)							
6		Module leng	th based on Modu	le-9-8-9-21Nov06.x	ls	approximat	e cryogenic unit leng	gth (km)				
7		_					2.434					
8	Total heat load (dynamic plus static) f	or 9-8-9 F	F units, full c	ryogenic unit								
9												
0			40 K to 80 K	5 K to 8 K	2 K		ssumptions:					
1				Temperature leve 1	emperature level	M	odule length based					
2					module)				gth for module wi			
3	Temp in	(K)	40.00	5.0	2.4				gth for module wi			
4	Press in	(bar)	16.0		1.2				this cryogenic uni			
	Enthalpy in	(J/g)	223.8	14.7	4.383			number of r	modules from cryc	genics_paran	neters_DKS.xlsx	
6	Entropy in	(J/gK)	15.3		1.862							
	Temp out	(K)	80.00	8.0	2.0	N	ote: cells highlighted	d in yellow a	re independent v	ariables, parar	neters that are e	ntered
8	Press out	(bar)	14.0	4.0 s	aturated vapor							
9	Enthalpy out	(J/g)	432.5	46.7	25.04							
0	Entropy out	(J/gK)	19.2	9.1	12.58							
1		T -										
2			40 K to 80 K	5 K to 8 K	2 K							
3	Predicted module static heat load	(W/module)	75.04	10.82	1.32							
4	Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79	H	eat loads per CM H	eatLoad she	eet			
5	,	,					_					
6	Number of modules per cryo unit (9-8-9-cavity modul	es)	189.0	189.0	189.0							
7	Total module static heat per cryo unit	(kW)	14.18	2.04	0.25							
8	Total module dynamic heat per cryo unit	(kW)	11.11	0.95	1.85							
9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
0	Non-module heat load per cryo unit	(kW)	1.10	0.22	0.22	A	dd 10 W. 10 W. and	50 W load t	otal for other heat			
1	Total predicted heat per cryogenic unit	(kW)	26.40	3.22	2.32				x at 2 K, 5 K and		velv	
	Total predicted mass flow per cryo unit	(g/s)	126.49		112.29				xes per cryo unit			
3	Ideal power based on total estimated heat	(kW)	121.6	152.9	358.7							
4			.21.0	.52.0	555.1							
	Heat uncertainty factor on static heat (Fus)		1.10	1.10	1.10	н	eat uncertainty facto	r is maroin	or underestimation	a heat loads		
	Heat uncertainty factor on dynamic heat (Fud)		1.10		1.10		ca. choonanty lacto	margin	Chaor Countain	guut loudd		
	Heat load per cryogenic unit including uncertainty	(kW)	29.04	3.54	2.55							
	Mass flow per cryogenic unit including uncertainty	(g/s)	139.14		123.52							
	Weighted ideal power	(kW)	133.7	168.2	394.6							
	4.5 K equiv weighted power	(kW)	2.0		6.0			Cryonlant	cefficient of perfo	mance (W/M/		
	Efficiency (fraction Carnot)	(044)	0.28		0.22			40 K - 80				
	Efficiency in Watts/Watt	(W/W)	16.4		703.0		TESLA TDR:		17 168			
2	e i valoritati	(**/**)	10.4	197.9	103.0		TEGEN TOR.		17 100	30		
4	▶ Title CM_ HeatLoad	RDR	RDR revised	TDR Power K	CCS TDR PC	ower DKS	TDR DKS T	ABLE	e+ 5 GeV sour	ce e-5	GeV source	summa

LINEAR COLLIDER COLLABORATION New Main Linac Configuration


- New Gradient: Fewer cryomodules, shorter cryo strings, shorter tunnel
- Cryogenic configuration is basis for tunnel layout
- Need to decide on new ML tunnel length, and 250GeV stage cryo configuration


LINEAR COLLIDER COLLABORATION Cryo Configuration (D*991555)

LINEAR COLLIDER COLLABORATION TDR Main Linac Configuration (D*1008405)

LINEAR COLLIDER COLLABORATION New Positron Source Parameters

- Long overdue: make 231m long undulator baseline
 -> avoid 5+5Hz running for positron production at 250GeV
- Should give specifications for target heat loads, assuming H-20 running conditions, i.e.:
 - 125GeV electron beam
 - 2625 bunches
 - 10Hz
- Generally: we should set a target what the positron source should be able to provide in an extreme case (maximum luminosity upgrade)
- Any positron source concept needs to be measured against that target

LINEAR COLLIDER COLLABORATION New Damping Ring Parameters

- Damping Ring parameters were defined many years ago
- Low emittance rings have made lots of progress
- Damping Rings might achieve better emittance:
 - Lower vertical emittance from better alignment?
 - Lower horizontal emittance from special arc lattice (DBA, TBA, TME)
 - But beware of dynamic aperture (TME was tried aleready...)
- If beam transport to IP preserves lower emittance: might be a way to higher lumi, espec. at 250 GeV
- What is the timeline for a possible new DR lattice?

LINEAR COLLIDER COLLABORATION Towards a New Baseline

• New Cryomodule Performance


• New 250GeV parameter set for a staged machine

500GeV

Note:

Order is dictated by urgency, not by inter-dependencies...

• New Main Linac

configuration

PS

Parameters

• High-Level parameters based

Allows new cost estimate

 New Positron Source **Parameters**

 New Damping Ring Parameters (and lattice)