

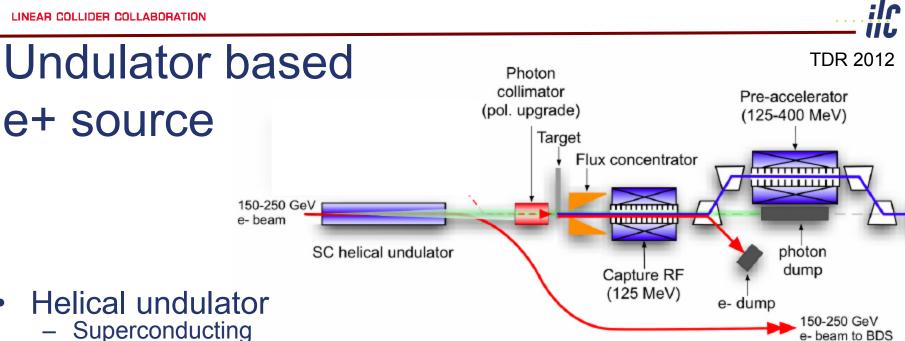
LINEAR COLLIDER COLLABORATION

Designing the world's next great particle accelerator

ILC positron source: photon vs. electron driven e+ production

ILC project meeting @ DESY

Sabine Riemann (DESY) 3. March 2017


__ilc

Outline

- Status undulator based source
- Status e- driven source
- Work to be done

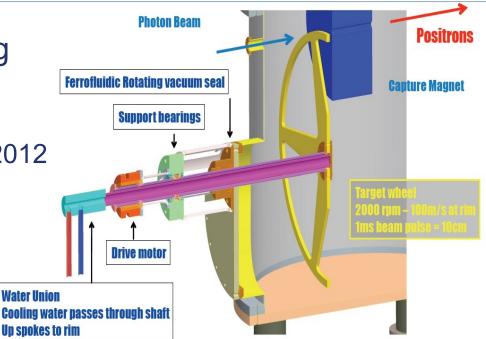
Remark:

- Jan 2017: new e+ group (WG1) formed under Shin Michizino
- Goal:
 - Evaluate source options (e- and γ driven)
 - Evaluate technical difficulties, cost, commissioning
 - June 2017: plan of R&D for FY 2017-2019
- Members:
 - Japan: T. takahashi, T.Omori, M. Kuriki, T. Okugi, A. Yamamoto, K Yokoya (chair)
 - Germany: A. Ushakov, G. Moortgat-Pick, B. List, SR CERN: P. Sievers
 - US: W. Gai

- Superconducting
- K=0.45...0.92, λ=1.15cm
- aperture 5.85mm
- Max 231m active length
- e+ Production Target
 - 400m downstream the undulator
 - 0.4 X0 Ti alloy (Ti6Al4V)
 - Spinning with 2000rpm (100m/s) in vacuum
- **Positron Capture:**
 - Pulsed flux concentrator + capture RF
- Acceleration, EC, spin rotation \rightarrow DR

Expected target load on ILC target (undulator)

E _{beam} [GeV]	E _{dep} [kW]	∆T _{max} /pulse [K]	dpa	E _{dep} [kW]	∆T _{max} /pulse [K]
	Nominal luminosity			High luminosity	
125 ^{Ushakov, LCWS16}	5.4	82	0.035	-	-
175 Ushakov, LWS16	3.9	80	0.06	-	-
250 (ILC EDMS)	2.0	130		4.1	195
250 Ushakov, LCWS16	2.3	86	0.05	4.6	128


Average energy deposition

- <6kW (nominal L, all energies)</p>
- <5kW (lumi upgrade 500GeV)</p>
- <8kW (pol upgrade)</p>

____i[c

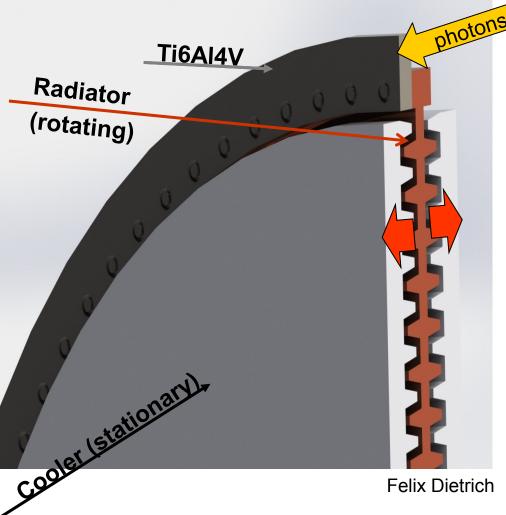
Positron Target

- Wheel of 1m diameter spinning with 2000rpm (100m/s) in vacuum
- Challenges: bearing, cooling
- Target prototyping at LLNL (Gronberg et al.; work stopped ~2012 due to lack of funding)
 - demonstrated that water cooling is very difficult

• Alternatives:

- Cooling by thermal radiation
- 'Friction cooling' using sliding pads

Target cooling by thermal radiation


DESY/U Hamburg/P. Sievers

- Rotating target wheel consists of Ti ۲ rim (e+ target) and radiator (Cu)
- Heat path from rim to radiator with large surface
- Thermal radiation of radiator to stationary water cooled coolers
- Target, radiator and cooler are in vacuum

Radiation cooling will work. But engineering work has to be done

ssues:

- low heat conductivity in Ti rim \rightarrow overheating must be avoided
 - Max temperature tolerated by target material?
- large weight of the target+radiator wheel (>100kg)
- Long 'heating' time to equilibrium temperature (hours)

Felix Dietrich

Felix Dietrich

W. Gai

W. Liu

(ANL)

2

Active Sliding Contact Cooling Demo Conceptual Illustration

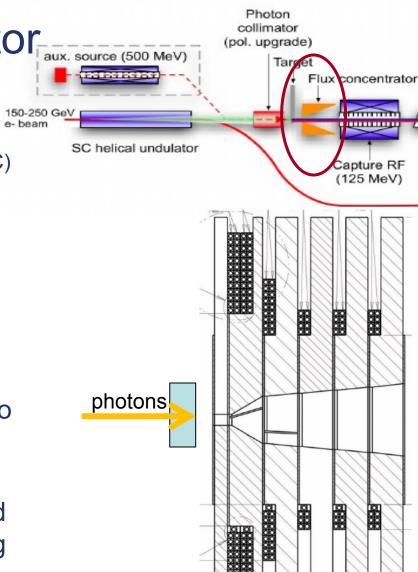
- 1. Rotating 1meter diameter Target Wheel at 2000 rpm (100 m/s) while extracting ~10kW by using active sliding contact cooling.
- 2. Target wheel is driven by a magnetically coupled drive motor which separates the motor from the vacuum.
- 3. Stability of wheel controlled by heavy duty machine spindle.
- 4. Temperature of wheel controlled by 4 Active Sliding Contact Cooling Pads.
- 5. Cooling Pad's temperature controlled by water/coolant.
- 6. Heat applied to wheel using UHV radiant filament heaters.
- 7. Diagnostic feedback: RPM, Temp and Pressure of Cooling Pads, Temp of Target Wheel, Vibration, etc.

Full Size Target Wheel Ready for Operations in Vacuum

3

Target cooling with sliding pads

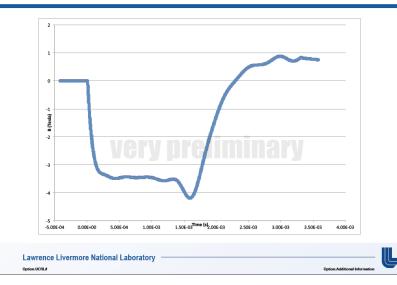
Tests in air clearly demonstrated that sliding contact cooling concept works

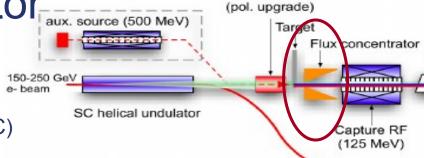

https://phys.org/news/2016-12-coolingtechnique-major-component-collider.html#jCp

- A fully functional prototype running at full speed over long periods of time in vacuum:
 - Significant funding is required currently not available

Pulsed Flux Concentrator

- capture efficiency ~25%
- low field on target → low eddy currents (~5mm distance target exit to FC)
- high peak field (3.2T), 1ms flat top
- Within 12cm, the magnetic field goes adiabatically down to 0.5T at capture RF
- Prototyping and testing at LLNL
 - FC seems workable but still need to demonstrate full average power operation
 - Run with 5Hz over extended period and full average power with cooling


J. Gronberg, LLNL



Pulsed Flux Concentrator

- capture efficiency ~25%
- low field on target → low eddy currents (~5mm distance target exit to FC)
- high peak field (3.2T), 1ms flat top
- Within 12cm, the magnetic field goes adiabatically down to 0.5T at capture RF
- Prototyping and testing at LLNL
 - FC seems workable but still need to demonstrate full average power operation
 - Run with 5Hz over extended period and full average power with cooling

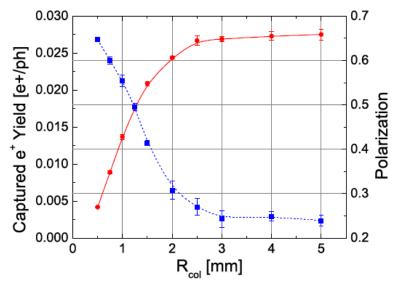
J. Gronberg, LLNL

Photon

collimator

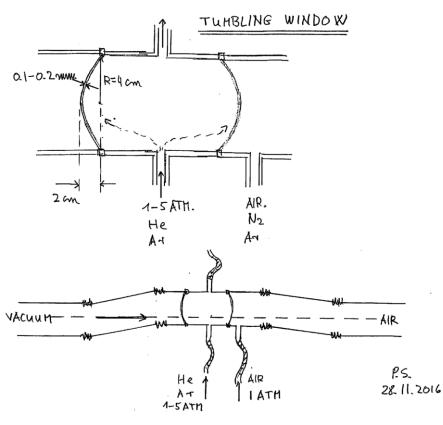
The magnetic field has a 1 ms flat top

...


S. Riemann

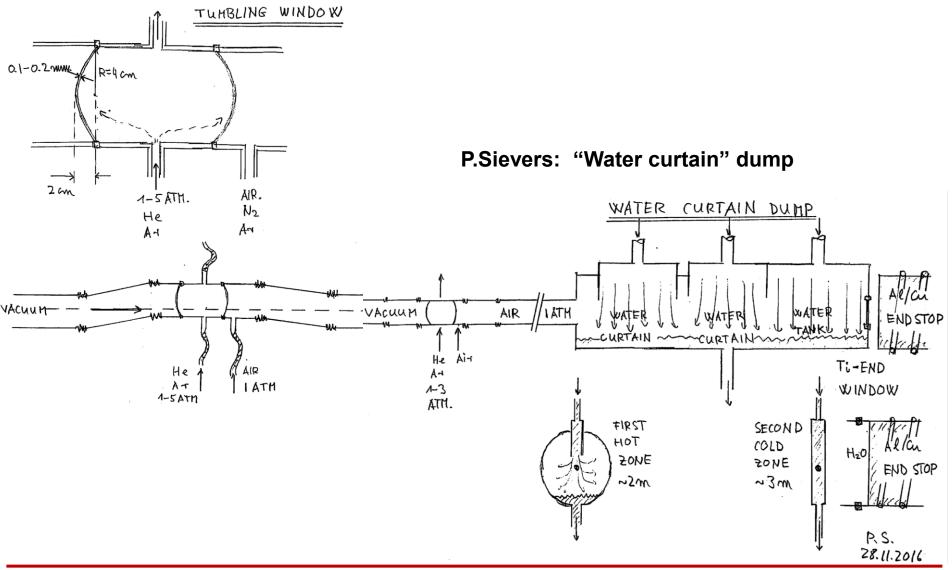
Polarization upgrade

- Currently not high priority; basic e+ polarization ~30%
- Collimation of photon beam yields higher polarization; 'loss' of photons compensated by longer undulator
- First collimator design exists; ideal undulator spectrum assumed

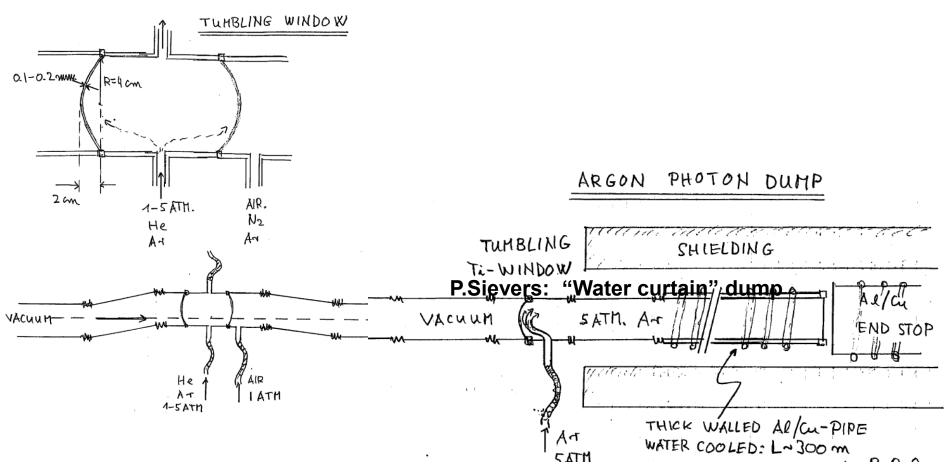

Parameter	Unit	Nominal L, K=0.92, λ =11.5mm			
Ecm	GeV		350	50	00
Drive electron beam energy	GeV	150	175	250	
e+ polarization	%	55	59	50	59
Collimator iris radius	mm	2.0	1.4	1.0	0.7
Active undulator length	m	231	196	70	144
Photon beam power	kW	98	114	83	173
Power absorbed in collimator	%	49	60	52	70

Technical integration of the undulator source

- Important: Photon beam dump
 - Most of the initial power has to be absorbed (<200kW)
 - Focused γ beam with 1-2×10^16 γ/sec (few tens MeV) creates high energy deposition density even in thin windows
 → exit windows to dump must be moved to avoid damage (each bunch train hits another position)
 - graphite dump core gets too hot
 - Design options under consideration
 - Water dump
 - Ar dump



Undulator Positron Source: Photon Dump options



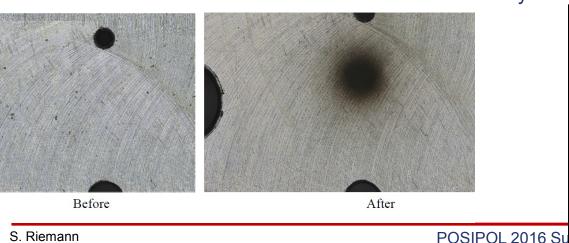
Undulator Positron Source: Photon Dump options

Undulator Positron Source: Photon Dump options

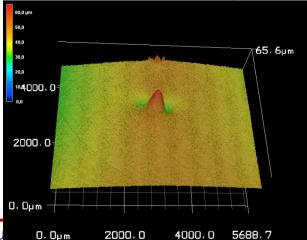
Technical integration of the undulator source

- Important: Photon beam dump
 - Most of the initial power has to be absorbed (<200kW)
 - Focused γ beam with 1-2×10¹⁶ γ/sec (few tens MeV) creates high energy deposition density even in thin windows
 → exit windows to dump must be moved to avoid damage (each bunch train hits another position)
 - graphite dump core gets too hot
 - Design options under consideration
 - Water dump
 - Ar dump

	Near waterfall	Far waterfall	Short Ar	Long Ar	
Distance to target (m)	48	1000	48	48	
Length (m)	7(water 1bar)+1		60 (Ar 5bar) + 2 (C) + 0.2 (Cu)	300 (Ar 5bar) + 0.2 (Cu)	
Cooling	Pump + process		14cm (Ar) + 2cm (Cu) water cool		
Rad. Shield	0.5m iron + 1m concrete 0.5m concrete?		concrete?		
issues	Dynamic response to 1ms beam				
Concern	Water	Water leak Ar leak (press), long-lived isotopes		long-lived isotopes	

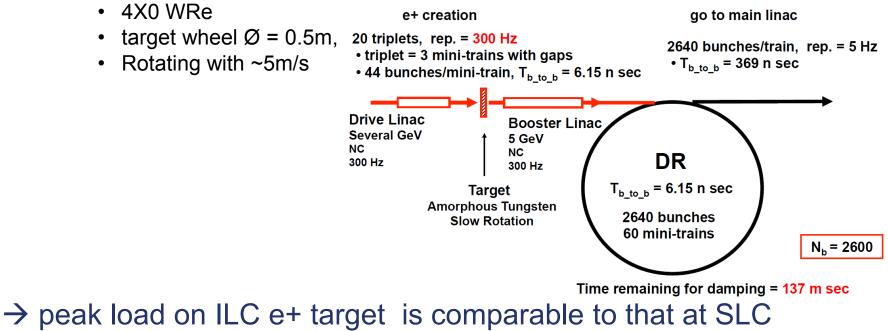


Material load tests


DESY/U Hamburg/U Mainz

- Test cyclic load expected from photon beam at e+ target (and other components) using MAMI e- beam (BMBF project)
- First results from run with 14MeV electrons:
 - Ti6Al4V targets (1mm,2mm) thick survived high cyclic load of ~7×10⁶ cycles heated to at least 690°C; no damage observed
 - Noticable changes only fo the material exposed to temperatures above 780 °C
- Irradiation of Ti and Ti alloy foils with 4MeV e- beam (~4×10⁶ cycles)
 - No changes observed (thickness: 0.15 0.25mm)

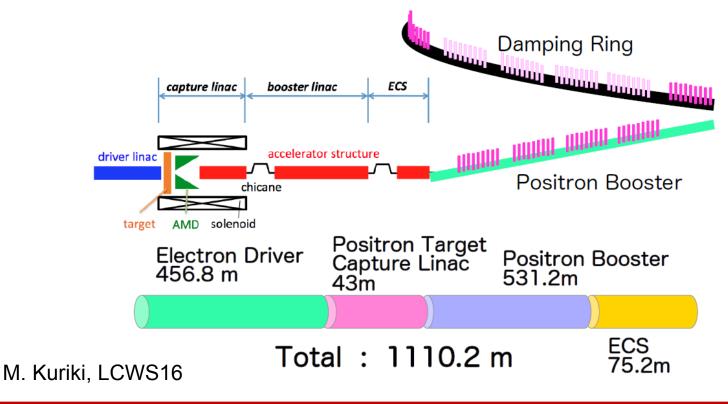
Target #3 (2mm thick)



Plastic deformation at front surface after cyclic load (~2years ILC) at high temperatures

Electron driven positron source

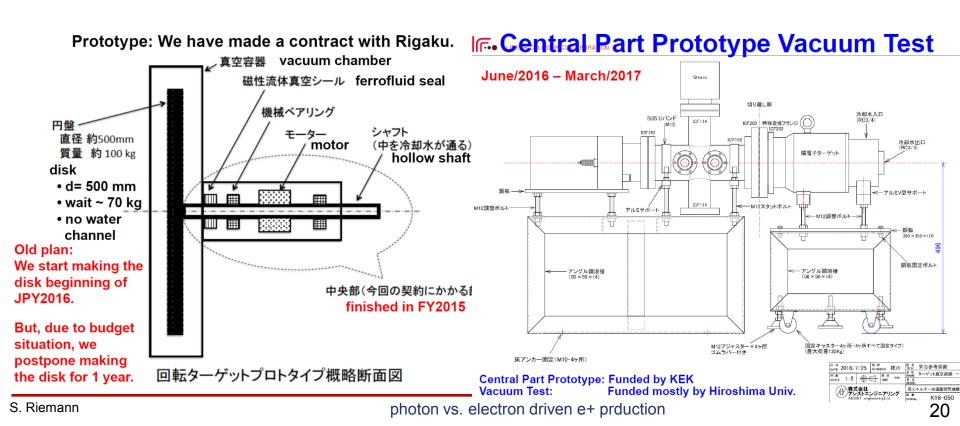
- SLC: 6×10¹² e+/second
 - 6X0 WRe target, ~30GeV e- beam
 - Experience: Peak load should be smaller than 35J/g
- ILC: 6.6×10¹³ e+/second (1.3×10¹⁴ e+/s lumi upgr.)
- Idea to avoid overload:
 - stretch the pulse from ~1ms to 63ms
 - Tune the e+ source parameters:



E- driven source:

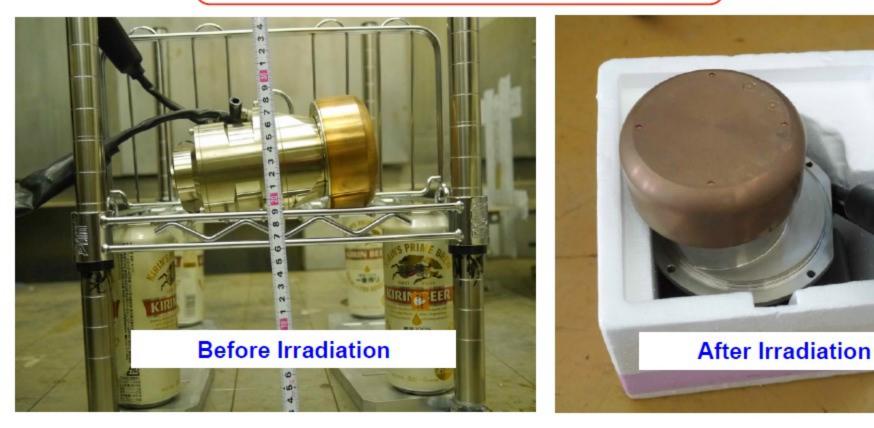
Backup solution if undulator source has show stopper

- Independent of ILC electron beam
- unpolarized positron beam <> physics potential (


Good progress towards a realistic source design

Electron driven Source: Target

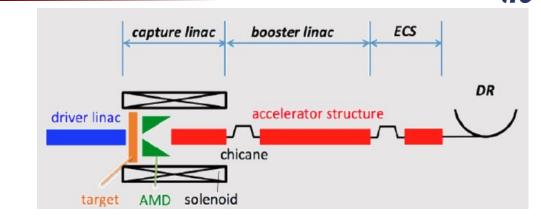
- Rotation speed 220rpm ⇔ max stress ~540MPa,
 - T_{max} < 500C
- Prototype development



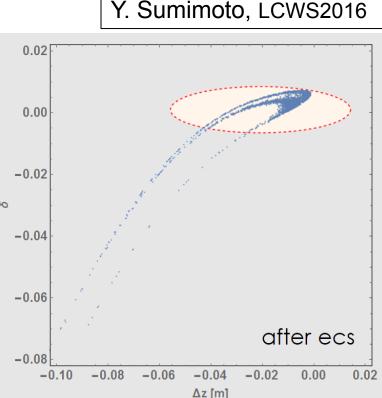
TEST: Radiation Tolerance Mar 2015 Irradiation to the small (d=10 cm) off-the-shelf rotation target

Radiation test of the whole system: motor, bearing, ferrofluid,,,

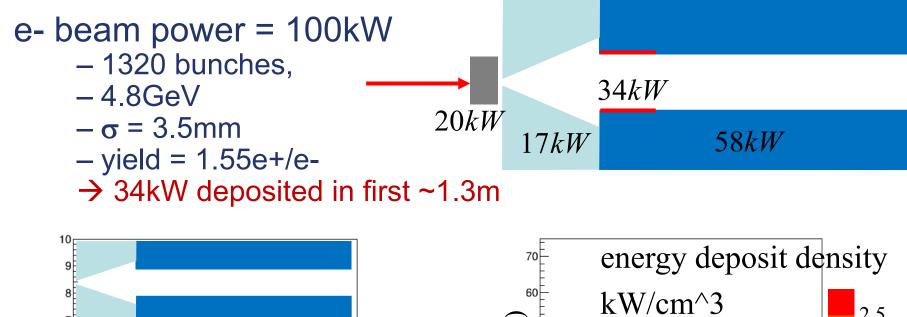
0.6 M Gy irradiation on the motor. corresponds 1 ILC year

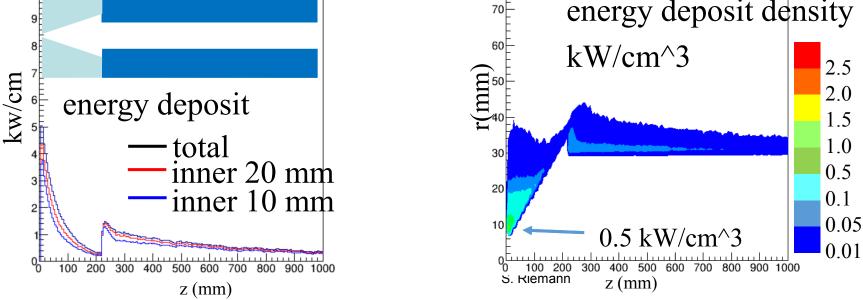


After irradiation, we made rotation and vacuum test.

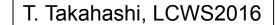

We found NO problem

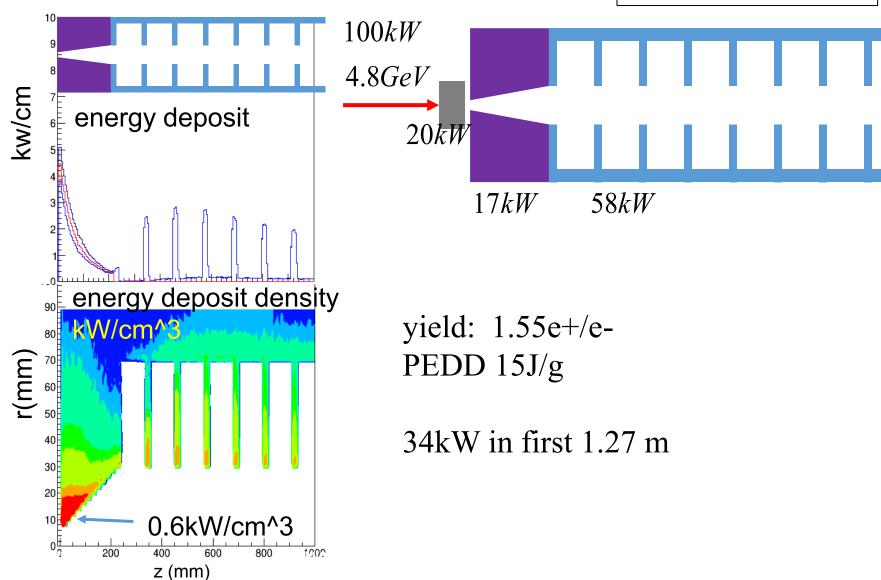
• Capture linac: improved capture efficiency under realistic RF setup with beam loading


- Booster linac: improved optimization for better transfer
- Energy compression system (ECS)
- Yield = 1.75 e+/e-(→ relaxed driver intensit



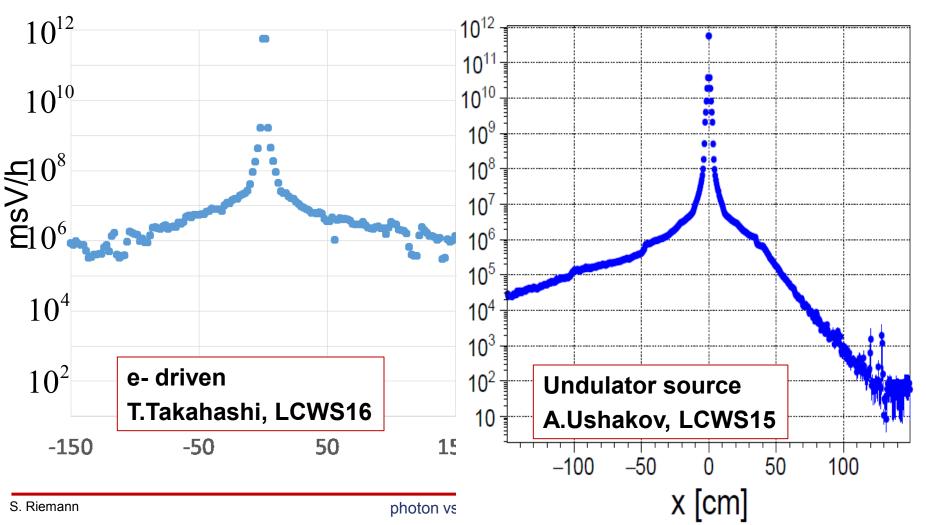
T. Takahashi, LCWS2016


Energy deposition at electron driven e+ source



photon vs. electron driven e+ prduction

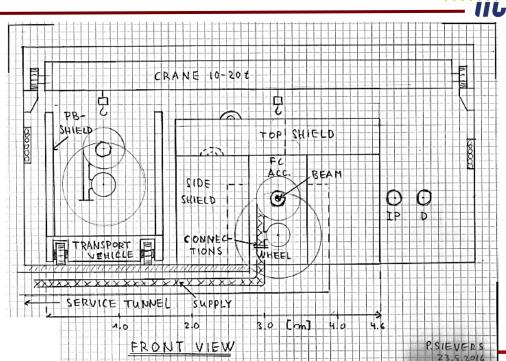
Ee = 4.8GeV, target thickness 16 mm sigma of E beam = 3.5mm



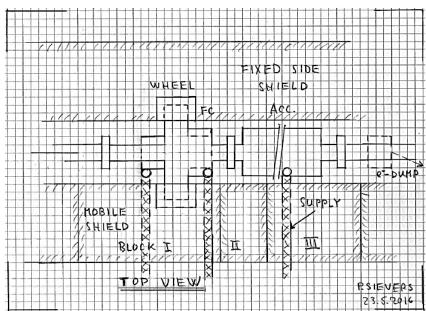
--*il*C

Radiation level at the e+ sources

Effective dose rate [mSv/h]


Comparison γ vs e- driven (nominal L)

	Unduator (γ)	e- driven
	dependent on e- beam for physics	Independent on e- beam for physics
	231m long sc helical undulator	Acc ring to get 5 GeV e- beam
Target material	1.5cm Ti alloy	1.6cm WRe
Beam power	$P_{\gamma} = <60 kW$	P _{e-} = 100 kW
Power deposition in target	~ 2-7.5kW	20kW
Power deposition in matching device	~ 2-8kW	17kW
Time structure	ILC (t _{tpulse} <1ms)	Stretched (t _{pulse} = 63ms)
Target wheel	R = 50cm	R = 25cm
Rotation speed	2000rpm (100m/s)	<220rpm (<5m/s)
Target cooling	Thermal radiation	Water cooling
E+ polarization	30% (upgrade poss.)	



- Both sources need R&D
 - Simulation & optimization
 - No showstopper identified for undulator-based source; but engineering work necessary. For E_{cm}=250GeV some parameter optimization would be helpful.
- Important for both sources:
 - Mechanical design (bearing, vacuum seals, ...)
 - Cooling
 - Radiation protection
 - Target maintenance scenarios
 - Remote handling
 - Storage area, transportation, etc.
 - First ideas exist and are under discussion

Target maintenance Scenarios (first ideas – P. Sievers)

Top View

Important: Required shielding of the target region including

- Target replacement
- Where/how waste targets to be stored
- Path to take waste target to the surface
- etc.

____ilc

To do

- plan of R&D for FY2017-2019 until June 2017
 - Main target: Answer to Nomura triangle issues
 - Include cost estimation for the R&D
- Consistent design to the level which is sufficient for the central region group to discuss about the electron-side BDS tunnel
- Discussion within KEK
 - KEK budget situation
 - Minimum amount in JFY2017 (starting Apr.2017)
 - Significant budget might come in JFY2018-19
 - It is not reasonable in this budget request to have 2 parallel schemes
 - KEK should be active for the baseline undulator scheme (must request budget of JFY2018-19 for undulator scheme)

WG 1 plan

- e-Driven Scheme
 - Concentrate on 1312 bunches
 - Target
 - Prove feasibility within JFY2017
 - Evaporation of magnetic fluid?
 - 50cm diameter model (not tungsten)
 - downstream part (FC, capture cavities) should be OK for 1312 bunches. Simulation studies are still needed but don't need money
 - Should finish e-driven study within JFY2017
- Undulator
 - Concentrate on radiation cooling
 - Key issues
 - Target itself (Ti-radiator contact, magnetic bearings, ..)
 - Photon dump
- Both:
 - Target replacement scenario
 - Shielding of target region
 - costs