

Upcoming Change Requests Benno List, DESY

> TCMB Meeting 8.3.2017

- Make sure that the technical design of the ILC stays sound
- Make sure that the design is still based on an international consensus and supported ٠ by the international community
- Advice the ILC director

How do we achieve that?

- Demand that changes to the baseline design are documented as Change Requests
- Make sure that Change Requests are properly reviewed by a Change Review Panel
- Decide on Change Requests based on CRP recommendation
- Make sure that Change Requests are distributed to stake holders (esp. P&D) ٠

Constraints

- TCMB members have limited resources to perform studies / conduct work
- TCMB will be sort of an advisory panel ٠
- Handle administrative tasks for Change Requests outside TCMB meeting ٠ (Benno will continue to serve as Change Administrator)

- Conclusion from Morika seems to be:
 - We are heading for an initial 250GeV stage (saves ~25-30% cost)
 - We have to save money on top of staging -> higher gradient goal

My beliefs:

- The International ILC Community (the LCC) has to give a consistent message
- The LCC should work out a proposal for a 250 GeV stage that is ٠
 - Financially acceptable for the funding agencies (primarily MEXT, but not only) ٠
 - Appealing to and supported by the international experimental community
 - A consensus among the accelerator community
- This proposal needs to be defined by summer 2017 What to Do
- Formulate the proposal ahead of AWLC2017 ٠
- Form the consensus at SLAC •
- Write a Report! ٠

- A.k.a. "new gradient goal" (31.5 -> 35MV/m?)
- Specify: New performance goal for cavities in cryomodules during beam op.
- Needs more than a single number: •
 - Gradient in vertical test stand <-> assumption about performance loss in cryomodules ٠
 - Q0 at operating gradient
 - Goal for fabrication cost (same as TDR?)
 - Goal for yield and acceptable gradient spread (stick to +/- 20%?)
 - Goal / strategy for tests
- Higher gradient goal is higher risk -> have to specify a risk mitigation strategy ٠
 - Build to performance (target gradient) whatever the cost versus
 - Build to cost (target yield) and have room for addt'l modules
- New gradient goal is basis for all further studies -> need a consensus asap
- Basis for shorter tunnel
- Lots of technical implications (cryo load, klystron power, modulators, couplers) • -> implications on top level parameters (bunches, current -> luminosity!)
- Who formulates a new gradient consensus? •

- Formulate a set of top-level parameters for a 250GeV stage
- TDR baseline set refers to 500GeV machine running at half gradient -> this is different!
- Consider a minimal machine (initial set up) plus a lumi upgrade
- Urgently needed by physics group
- Specify:
 - Beam energy, luminosity
 - Bunch charge, pulse length, current etc
 - Assumed IP characteristics (beta*, emittance, beam disruption,...)
 -> see "New Damping Ring Parameters"
- Develop some luminosity upgrade scenario, e.g.
 - install more klystrons, more cryo power, build 2nd positron DR
 -> double bunches per pulse -> double lumi
 - Install even more cryo and go to higher rep-rate?
- Generally: buy equipment needed for 500GeV energy upgrade anyway
- Upgrade scenario puts constraints on initial configuration (extendability)
 -> layout of Main Linac, space for more cryo power

---ilc

- Choice of new gradient will affect either/or
 - Top level parameters: bunch charge, number of bunches, pulse length OR
 - Power consumption (HLRF, cryo, fill time, etc)
 - Cryogenic Power calculation
- These Documents are the basis for the specification of all subsystems, such as
- Positron source
- Damping rings
- Cryo plants
- Cryomodules, klystrons, couplers...
- Also: Top level parameter list should contain entries for lumi upgrades that correspond to H-20 scenario used by physics group
- And: Check if goals for emittance at IP may be adjusted (-> DR parameters)

LINEAR COLLIDER COLLABORATION TOp-Level Parameters (D*925325)

IP and General Parameters			TF = Trave	ling Focus							
								L Upgrade	$E_{cm} U_{l}$	ograde	
Centre-of-mass energy	E _{cm}	GeV	200	230	250	350	500	500	1000	1000	comment
									A1	B1b	
Beam energy	E beam	GeV	100	115	125	175	250	500	500	500	
Lorentz factor	γ		1.96E+05	2.25E+05	2.45E+05	3.42E+05	4.89E+05	4.89E+05	9.78E+05	9.78E+05	
Collision rate	f rep	Hz	5	5	5	5	5	5	4	4	
Electron linac rate	f linac	Hz	10	10	10	5	5	5	4	4	
Number of bunches	n _b		1312	1312	1312	1312	1312	2625	2450	2450	
Electron bunch population	Ν.	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
Positron bunch population	N +	×10 ¹⁰	2.0	2.0	2.0	2.0	2.0	2.0	1.74	1.74	
Bunch separation	Δt_b	ns	554	554	554	554	554	366	366	366	
Bunch separation $\times f_{RF}$	$\Delta t_b f_{RF}$	/	720	720	720	720	720	476	476	476	
Pulse current	Ibeam	mA	5.8	5.8	5.8	5.8	5.79	8.75	7.6	7.6	
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.250	0.225	
Electron RMS energy spread	$\Delta p/p$	%	0.206	0.194	0.190	0.158	0.124	0.124	0.083	0.085	See EDMS D*971945
Positron RMS energy spread	$\Delta p/p$	%	0.190	0.165	0.152	0.100	0.070	0.070	0.043	0.047	See EDMS D*971945
Electron polarisation	Ρ.	%	80	80	80	80	80	80	80	80	
Positron polarisation	P +	%	31	31	30	30	30	30	20	20	Approximate numbers (Wanming Liu)
Horizontal emittance	YEx	μm	10	10	10	10	10	10	10	10	TeV numbers are potentially too optimistic. Check with K.Kubo.
Vertical emittance	ye,	nm	35	35	35	35	35	35	30	30	TeV numbers are potentially too optimistic. Check with K.Kubo.
IP horizontal beta function	β_x^*	mm	16.0	14.0	13.0	16.0	11.0	11.0	22.6	11.0	
IP vertical beta function (no TF)	β_y^*	mm	0.34	0.38	0.41	0.34	0.48	0.48	0.25	0.23	
IP RMS horizontal beam size	σ_x^*	nm	904	789	729	684	474	474	481	335	
IP RMS veritcal beam size (no TF)	σ_y^*	nm	7.8	7.7	7.7	5.9	5.9	5.9	2.8	2.7	
Horizontal distruption parameter	D_x		0.2	0.2	0.3	0.2	0.3	0.3	0.1	0.2	
Vertical disruption parameter	D_y		24.3	24.5	24.5	24.3	24.6	24.6	18.7	25.1	
Horizontal enhancement factor	H_{Dx}		1.0	1.1	1.1	1.0	1.1	1.1	1.0	1.0	
Vertical enhancement factor	H_{Dy}		4.5	5.0	5.4	4.5	6.1	6.1	3.5	4.1	
Total enhancement factor	H_D		1.7	1.8	1.8	1.7	2.0	2.0	1.5	1.6	
Geometric luminosity	L_{geom}	×10 ³⁴ cm ⁻² s ⁻¹	0.30	0.34	0.37	0.52	0.75	1.50	1.77	2.64	
R											

LINEAR COLLIDER COLLABORATION Power Consumption (D*965055)

AC Pow	er																
Scaling for	or low centre of mass	s running (inc	luding	10Hz)													
Updated	19/03/2013	3															
Initial beam er	11	5 GeV															
				TDR Baseline													
				Reference (KCS)	Baseline (scaled)	1	Baseline (sc	aled)			Baseline (s	caled)		E	Baseline (sca	aled)	
	Ecm	GeV		500	350		250				230				200		
						e+	e- (lumi)	e- (e+ prod)	Totals	64	e- (lumi) e- (e+ prod)	Totals	e+	e- (lumi)	e- (e+ prod)	Totals
	Gradient	MV/m	_	31.5	21.4	14.7	14.7	18.1		13.	13.4	18.1		11.4	11.4	18.1	
	Q0			1.0E+10	1.0E+10	1.0E+10	1.0E+10	1.0E+10		1.0E	10 1.0E+10	1.0E+10		1.0E+10	1.0E+10	1.0E+10	
	Energy gain	Gev		4/0	320	110	110	135		10	100	135		85	85	135	
	Rep. rate	Hz		5	5	5	5	5		5	5	5		5	5	5	
	Linac length factor			1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0		1.0	1.0	1.0	
	Particles per bunch	x10 ¹⁰		2.0	2.0	2.0	2.0	2.0		2.0	2.0	2.0		2.0	2.0	2.0	
	Number of bunches			1312	1312	1312	1312	1312		131	2 1312	1312		1312	1312	1312	
	Average beam power (dump)	MW		10.5	7.4	2.9	2.9	3.5		2.1	2.7	3.5		2.4	2.4	3.5	
	$\Delta t_b \bullet f_{DR}$			360	360	360	360	360		36	360	360		360	360	360	
	Δŧ.	ns		553.8	553.8	553.8	553.8	553.8		553	8 553.8	553.8		553.8	553.8	553.8	
	Beam pulse	us		726.6	726.6	726.6	726.6	726.6		726	6 726.6	726.6		726.6	726.6	726.6	+
	Beam current	mA		5.79	5.79	5,79	5.79	5,79		5.7	5.79	5.79		5.79	5,79	5,79	
	Matched G	XIU		5.5	3.7	2.6	2.6	3.1		2.3	2.3	3.1		2.0	2.0	3.1	
		116		025.0	630.4	433.4	133.4	531.0		304	0 394.0	531.0		334.0	334.0	531.0	+ +
	SII DE pulse length	05		4.05	4.90	4 40	4.40	4.00			0 334.0	4.00		3.00	4.00	4.00	++
	PE to hear P off	ms		C0.1	E 49/	639/	639/	5.9%		859	65%	5.9%		69%	69%	5.9%	++
	RF to beam P ett.			4470	04%	03%	03%	30%		001	00%	00%		00%	00%	36%	+
DE	2x average linac beam nower	MM	-	0.88	6.73	2.31	2.31	2.84	7.46	21	2 10	2.84		1 70	1 70	2.84	+ +
TM .	Average RE nower	MW		22.5	12.6	3.7	3.7	4.9	1.40	31	32	4.9		2.6	2.6	4.9	++
	AC-RE Efficiency			39%	39%	39%	39%	39%		395	39%	39%		39%	39%	39%	
	Total RF AC power	MW		58.1	32.5	9.5	9.5	12.7	31.8	8.4	8.4	12.7	29.5	6.8	6.8	12.7	26.2
	Total efficiency			17%	21%	24%	24%	22%		25	25%	22%		26%	26%	22%	
	RF power dumped	MW		48.2	25.8	7.2	7.2	9.9	24.3	6.3	6.3	9.9	22.4	5.0	5.0	9.9	19.8
Cryo	Static cryo power	MW		11.2	11.2		11.2				11.2	•			11.2		
	RF load			13.8	5.2	1.0	1.0	1.7		0.0	0.8	1.7		0.6	0.6	1.7	
	Input coupler			3.8	2.0	0.6	0.6	0.8		0.5	0.5	0.8		0.4	0.4	0.8	
	HOM coupler			1.0	1.0	0.5	0.5	0.5		0.5	0.5	0.5		0.5	0.5	0.5	
	HOM absorber			0.3	0.3	0.2	0.2	0.2		0.3	0.2	0.2		0.2	0.2	0.2	
	HOM (cavity)			1.0	1.0	0.5	0.5	0.5		0.	0.5	0.5		0.5	0.5	0.5	
	Beam tube bellows			0.6	0.2	0.0	0.0	0.1		0.0	0.0	0.1		0.0	0.0	0.1	
	Gfac			8.73E-04	3.29E-04	1.32E-04	1.32E-04	2.16E-04		1.05E	04 1.05E-04	1 2.16E-04	I	7.14E-05	7.14E-05	2.16E-04	

3/9/2017

KCS (US) AC Power KCS (US) (upgrades) 250 GeV 1st stage Damping Ring Sheet1

LINEAR COLLIDER COLLABORATION Cryomodule Heat Loads (D*94395)

	Α	В	С	D	E	F	G	н	I	J	к	L	М	N	0	Р	Q	R	S	т	U	V	W	х	
1		Tom Potemon																							
2		Revised for TDP parameters	s 26 June 20	012																					
4		Iteration of this heat load tab	ole with inpu	it from Chr	is Adolphser	n, 5 Jan 07									10 Hz LI	P KCS e- (e- source b	aseline)							
5			TESLA nur	mbers prov	ride basis for	r scaling, F	RDR numbe	rs for refer	ence	ence			positro	n beam	positron productio		n electron beam								
6		Cryomodule	TES	A IS	ILC 9.8.9	(RDR)	RDR revised*		TDR M L	TDR M Linac KCS TDR M Li		inac DKS	5 Hz LP	KCS e+	1/2 of 10 Ha	z LP KCS e	1/2 of 10 Ha	LP KCS e-	ILC 9-8-9 refers to the number of cavities in the modules in a ML unit						
7		E, [MV/m]	23	.4	31.	.5	31.5		31.5		31.5		24.1		23	3.7	23.7		G						
8		Q	1.E+	+10	1.E+	+10	1.E	+10	1.E+10		1.E	+10	1.E+10		1.E	+10	1.E	+10							
9		Rep rate, [Hz]	5	5	5		ŧ	5	6	i	5		5		5		5								
10	_	Number of Cavities	1:	2	8.6	67	8.6	67	8.6	67	8.6	67	8.0	000	8.0	000	8.0	00	avg number of cavities per module						
11		Fill time [µsec]	42	20	59	7	59	97	92	24	93	24	4	71	41	63	41	63	Tf			Mar-08 a	fter RDR		
12		Beam pulse [µsec]	95	50	96	9	96	59	72	27	73	27	73	27	72	27	73	27	ТЬ			Substitute th	e data belo	w	
13		Number of bunches	2820		2670		2670		13	12	13	12	13	312	13	12	13	12	Nb			for the TESL	A TDR nu	umbers	
14	_	Particles per bunch [1e10]	2	2	2.0)4	2.0	04	2.0	00	2.	00	3.	00	3.	00	3.	00	Qb			Coupler data	from Lina	.c 2004	
15	_	Beam current (mA)	9.5	51	9.0	00	9.0	00	5.	30	5.	80	8.	70	8.70		8.70					by W-D Mod	ller et. al.		
16		Gfac			2.0	9	2.0	9	2.3	24	2.	24	0.	94	0.90		0.	90	Stored Energy Factor = G^2*(Tb + 1.1*Tf)			2 K 4	K	70 K	
17		Pfac			1.5	54	1.5	54	1.1	18	1.	18	0.	87	0.85		0.85		Input Power Factor = G*(Tb + 2*Tf)*Cfac		0 power	0.02	0.20	1.90	
18		Bfac			0.99		0.9	99	0.4	46	0.	46	1.	04	1.04		1.04		Bunch Factor = Nb*Qb*2		TESLA	0.06	0.50	6.00	
19		Cfac			0.95		0.95		0.61		0.61		0.91		0.91		0.91		Beam Current Factor = Qb*Nb/Tb	y conclusio	n net dyn	0.04	0.30	4.10	
20			Static Dynamic		Static Dynamic		Static	Dynamic	c Static Dynami		c Static Dynamic		Static Dynamic		Static	Dynamic	Static	Dynamic							
21		Temperature Level	2	к	2K		2K		2K		2K		2K		2K		2K								
22		RF load		4.95		7.46		7.46		8.02		8.02		3.09		2.97		2.97	Dynamic load scaled by the number of caviti	es and Gfa	c				
23		Supports	0.60		0.60	-	0.60	-	0.60	-	0.60	-	0.60	-	0.60	-	0.60	-	Assume independent of number of cavities						
24		Input coupler	0.24	0.48	0.55	0.16	0.17	0.53	0.17	0.41	0.17	0.41	0.16	0.28	0.16	0.27	0.16	0.27	Static load scaled by number of cavities, dyn	namic by Pfac also					
25		HOM coupler (cables)	0.01	0.27	0.01	0.18	0.01	0.18	0.01	0.12	0.01	0.12	0.01	0.16	0.01	0.16	0.01	0.16	Static and dynamic load scaled by number of	f cavities, d	ynamic b	y Cfac also			
26		HOM absorber	0.14	0.02	0.14	0.02	0.14	0.02	0.14	0.01	0.14	0.01	0.14	0.01	0.14	0.01	0.14	0.01	Dynamic load scaled by Bfac						
27		Beam tube bellows		0.24		0.36		0.36		0.39		0.39		0.15		0.14		0.14	Dynamic load scaled by the number of caviti	es and Gfa	c				
28		Current leads	0.04		0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	1.70	1.70	0.57	0.57	0.57	0.57	For ML weigh by a factor of 1/3 since only 1	in 3 module	es have q	uads**			
29		HOM to structure		1.68		1.20		1.20		0.56		0.56		1.17		1.17		1.17	Static load scaled by the number of cavities,	dynamic by	Bfac als	0			
30		Coax cable (4)	0.05		0.05		0.05		0.05		0.05		0.05		0.05		0.05		Assume indepent of number of cavities						
31		Instrumentation taps	0.07	5.40	0.07	7.00	0.07	7.00	0.07		0.07		0.07		0.07		0.07		Assume indepent of number of cavities						
32		Scales as Gfac		5.19		7.83		7.83		8.41		8.41		3.24		3.11		3.11							
33		Scales as Plac	4.45	0.48	4.70	0.16	4.00	0.53	4.00	0.41	4.00	0.41	0.70	0.28	4.00	0.27	4.00	0.27							
34		Diatio dynamic cym	1.10	1.97	1.70	1.00	1.32	1.00	1.32	0.97	1.32	0.97	2.13	3.00	1.00	1.92	1.00	1.92	Total for 0.8.0 TDB KCS BE unit below	Total fa		the holow			
33		Static, dynamic sum	1.15	7.04	1.70	9.07	1.32	10.04	1.32	9.79	1.32	9.79	2.13	0.07	1.00	5.30	1.00	0.30	22.22	10(2110	1 nen	ity below			
30		ZK Sum [W]	8.8 11.4			.4	- 11	.4	11			.1 V	9		0	.9	0	.9	33.33	0.99	1.202				
3/		Dediation	5K		51	N	5	N	5	N.	5	~	1 00		1 00	n.	1 00	n	Otatio load appled by pumber of contribu-						
38		Radiation	1.95		1.41		1.41		1.41		1.41		1.30		1.30		1.30		Static load scaled by number of cavities						
39		Supports	2.40	2.60	2.40	4.00	2.40	4.00	2.40	2.06	2.40	2.00	2.40	2.40	2.40	2.04	2.40	2.04	Assume indepent of number of cavities	amia hu Df					
40		HOM coupler (coblec)	2.40	3.60	1.48	1.32	1.73	4.00	1.73	3.00	1.73	3.00	1.60	2.10	1.60	2.04	1.60	2.04	Static load scaled by number of cavities, dyn	amic by Pta	au also	u Clee elco			
41		Title Coupier (cables)	0.40	2.00	0.29	1.62	0.29	1.82	0.29	1.17	0.29	1.17	0.27	1.02	0.27	1.62	0.27	1.02	Static and dynamic load scaled by humber o	cavities, d	ynamic b	y crac also			
•	₽	Title CM_Heat	Load	RDR	RDF	revised	TDR	Power K	US TI	JR Powe	rDKS	I DR DR	S TABLE	e+ 5	GeV sou	rce e	- 5 GeV s	ource	summary +						

LINEAR COLLIDER COLLABORATION Cryogenic Power (D*94395)

	Α	В	С	D	E	F	G	н	I	J	K	L	
1	Tom Peterson		ILC Crv	ogenic Power Esti	nates								7
2	26-Jun-12												
3	This sheet:	TDR Power	DKS										
4		1 standard o	ryogenic unit with D	KS arrangement	nto crvo strinos a	nd crvo units							
5		Heat loads t	per attached CM He	eatLoad sheet (she	et 1)								
6		Module lend	th based on Module	-9-8-9-21Nov06.x	ls	approximate	crvogenic unit len	oth (km)					
7					-		2.434	a					
8	Total heat load (dynamic plus static) for	or 9-8-9 F	E units full cr	vogenic unit									
0	Total heat load (dynamic plus static) it	0-0-01		yogenic unit									-
10			40 K to 90 K	EKINOK	24	400	mational						
11			Tomporatura Java			Ass	umptions.	on Madula 0.4	D DIMercOC via				_
12			(modulo)	module)	remperature level	MOC	ule length based	on wooule-s-o	b-9-2 INOVUO.XIS	mognate and	DDM		
12	Tomp in	(14)	(module) (module) (module)		12000	mm slot lengt	In for module with	n magnets and	BPINI and BDM		-
14	Press in	(N) (hor)	40.00	5.0	2.4		12000	mm slot lengt	in for module with	four magnets a	Ind BPM		
14	Press in	(Dar)	10.0	5.0	4 202		109	modules in th	is cryogenic unit	(iongest antici	Jated)		-
10	Entrapy in	(J/g)	223.0	14.7	4.303			number or mo	odules from cryoş	genics_parame	ters_DK5.xisx		
17	Tomo out	(J/gK)	10.3	3.9	1.002	Mot	a, aalla highlighto	d in vollow or	independent up	righten norm	atom that are a	atored	
10	Press out	(N) (hor)	14.0	0.0	2.U	NOt	e: cells nighlighte	d in yellow are	a independent va	nables, param	sters that are en	ntered	
10	Fress out	(Dar)	422.5	4.0 3	aturated vapor								
20	Entrany out	(J/g)	432.3	40.7	10.59								
20	Entropy out	(J/gK)	19.2	9.1	12.00								
22			40 K to 90 K	E K to 8 K	21								
22	Predicted module static heat load	(M/module)	40 K 10 00 K	10.92	1 32								
23	Predicted module static reat load	(W/module)	59.90	5.05	0.70	Hor	Lloade per CM H	leat ood choo					
24	Predicted module dynamic heat load	(winiodule)	30.00	5.05	5.75	nea	it loads per owi_h	leatLoad shee					
25	Number of modules per one unit (0.8.9, cavity module		190.0	190.0	190.0								
20	Total module static heat per cryo unit	(14140)	14.18	2.04	0.25								
28	Total module dynamic heat per cryo unit	(KW)	11.10	0.95	1.85								
29	Total module dynamic heat per cryo unit	(811)		0.00	1.00								
30	Non-module heat load per cruo unit	(MAD)	1.10	0.22	0.22	Add	10 W 10 W and	50 W load tot	al for other heat				
31	Total predicted beat per chogenic unit	(KW)	26.40	3.22	2.32	~~~~	10 11, 10 11, and	per cryp box	at 2 K 5 K and 4	0 K respective	slu		
32	Total predicted mass flow per cryo unit	(a/s)	126.49	100.42	112.02			times 22 hove	es ner crvo unit	o IX, respective	9		
33	Ideal power based on total estimated heat	(kW)	121.6	152.9	358.7			000022.0000	oo per oryo anne				
34		(arry	121.0	102.0	000.1								
35	Heat uncertainty factor on static heat (Fus)		1.10	1.10	1.10	Hes	t uncertainty facto	or is margin for	runderestimating	heat loads			
36	Heat uncertainty factor on dynamic heat (Eud)		1.10	1.10	1.10	1100	a uncontainty fact	i io margin io	anderestimating	neut loudo			
37	Heat load per cryogenic unit including uncertainty	(kW)	29.04	3.54	2.55								
38	Mass flow per cryogenic unit including uncertainty	(a/s)	139.14	110.46	123.52								
39	Weighted ideal power	(kW)	133.7	168.2	394.6								
40	4.5 K equiv weighted power	(kW)	2.0	2.6	6.0			Cryoplant cor	efficient of perform	mance (W/W)			
41	Efficiency (fraction Carnot)		0.28	0.24	0.22			40 K - 80 K	5K-8K	2 K			
42	Efficiency in Watts/Watt	(W/W)	16.4	197.9	703.0		TESLA TDR:	17	7 168	588			
10					1000 -								
. 4	Title CM_HeatLoad	RDR	RDR revised	TDR Power P	CS TDR F	ower DKS	TDR DKS T	ABLE e	+ 5 GeV source	ce e-50	ieV source	summary	1

- New Gradient: Fewer cryomodules, shorter cryo strings, shorter tunnel
- Cryogenic configuration is basis for tunnel layout
- Need to decide on new ML tunnel length, and 250GeV stage cryo configuration

LINEAR COLLIDER COLLABORATION Cryo Configuration (D*991555)

A	В	С	D	Е	F	G	н	1	1	K	L	м	N	0	P	Q	R	S	т	U	v	w	х	Y	Z	AA	AB
	_	_																									
modules	_						without	with	without									_									
							quad	quad	quad																		
ML unit (lengths	in me	ters)					12.652	12.652	12.652		37.956	(lengths in	n meters)														
5 5							Linree modu	lies																			
	_							\sim																			
						ML unit	ML unit	ML unit	ML unit	end box		long stri	ing (4 ML	units)													
string (vacuum)	enath)					37,956	37.956	37,956	37,956	2,500		15/ 3	19 (4 112	unito,													
Sung (vacuum	engui					four ML un	its (12 modu	les) plus st	ing end box			104.0															
2						short string	g: three ML u	units (9 mod	ules) plus str	ing end box	1	short stri	ing (3 ML u	nits)													
3											· · · · · ·	116.4															
5								\sim																			
6					warm			1				warm															
8					space	end box			XN		end box	space	end box														
Main Linac Cov	naenic	Unit			7.652	2.500		Ns	rinas		2.500	7.652	2.500	strings	etc												
(CII)	gonic	Unit.					16(12) mor	fules plue o	ne end how n	or string v t	l etringe																
(00)							(One service	ce box repla	ces a string	er string x r end box.)	a sunnys			-													
2	_							-	_			\sim	-														
4				Std cry	ogenic u	nit length :	= N x string	length + 2	5=	2446.2		12.652	(set as m	odule slot le	anath)												
5				,									(
S	pin Ro	tator	BC1		RTML B	C2																					
7					4	long str			long str	warm		long str	warm	(long str			long str		0	long str			undulator			
8	SC	warm	3	warm	0	short str	warm	11	short str	drift	21	short str	drift	2	1 short str	warm	2	1 short str	drift	21	short str	drift	collimation	protection	66		
s	olenoids	space	modules	space	16	ML units	space	33	ML units	space	63	ML units	space	6	3 ML units	space	6	3 ML units	space	63	ML units	space	section	section	und	ulators	Source
Electron linac	72.1	59.7	39.7	181.9	6	19.8	288	12	32.5	7.652	24	46.2	7.652	24	46.2	7.652	24	46.2	7.652	24	46.2	7.652	82.4	295.9	3	18.0	BDS
																											DR
2	-				1261.2		,		1286.4	→+	24	53.9 -	*	24	53.9	-	24	453.9	- 1	24	57.7		82.4				
3	+	-			2547.6	total cryo	genic unit l	ength with	RTML -	*			4907.8	-		*			4911.6				>	<	614.0		*
4																											
Cryogenic plant	locatio	ons							S	haft PM-1	2		Shaft PM-	11	S	shaft PM	-10		Shaft PM	-9	5	Shaft PM	-8				
6	_					(start of r	main linac)	and o	ryogenic	plants				and c	ryogenio	c plants				and	cryogenic	plant				
7													-										-				
8						CU-7b					CU-7a			CU-5b			CU-5a			CU-3b							
Cryogenic loads	;				150	modules	and a few	SC soler	oids		189	modules	3	189	modules		18	9 modules		189	modules						
0					includin	g RTML a	nd 500 m	of transfe	rlines											including	9 energy						
1																1				recovery	modules						
2														4400.000		n alla lla a	-										
4	_													11188.08	2 meters r	nain iina	IC										
5													285	5 ML units	s in the ma	ain linac	electron	side					95	strings			
6										note	that there	are only	/ 282	2 ML units	s in the ma	ain linac	positron	side, due	to no und	lulator ene	rgy recove	ry		_			
7	_												-	-	-					-		-					-
								L																			

LINEAR COLLIDER COLLABORATION TDR Main Linac Configuration (D*1008405)

Benno List

- Long overdue: make 231m long undulator baseline
 -> avoid 5+5Hz running for positron production at 250GeV
- Should give specifications for target heat loads, assuming H-20 running conditions, i.e.:
 - 125GeV electron beam
 - 2625 bunches
 - 10Hz
- Generally: we should set a target what the positron source should be able to provide in an extreme case (maximum luminosity upgrade)
- Any positron source concept needs to be measured against that target

_____ilc

- Damping Ring parameters were defined many years ago
- Low emittance rings have made lots of progress
- Damping Rings might achieve better emittance:
 - Lower vertical emittance from better alignment?
 - Lower horizontal emittance from special arc lattice (DBA, TBA, TME)
 - But beware of dynamic aperture (TME was tried aleready...)
- If beam transport to IP preserves lower emittance: might be a way to higher lumi, espec. at 250 GeV
- What is the timeline for a possible new DR lattice?

