ILC in EUROPE – Assorted Issues

Thomas Schörner-Sadenius (DESY)

MDI / CFS Mini-Workshop KEK, 16 May 2017

E-JADE is a Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE) action, funded by the EU under Horizon2020

Contents

- European XFEL
 - Reminder
 - Status of the machine (thanks to Nick Walker)
 - Safety at the European XFEL (see separate presentation)
- ILC in Europe
 - Strategy processes
 - European Action Plan
 - •

Contents

- European XFEL
 - Reminder
 - Status of the machine (thanks to Nick Walker)
 - Safety at the European XFEL (see separate presentation)
- ILC in Europe
 - Strategy processes
 - European Action Plan
 - •

Experimental Hall in Schenefeld

Schenefeld

Undulator Tunnels

Ostlorfer Born

European XFEL

Injector on DESY campus

0 m

DESY-Bahrenfeld

Linear Accelerator 17.5 GeV

Some facts:

- Overall length 3.4 km; superconducting linac (ILC technology) for 2.1 km
- Tunnel between 6 and 38 m underground
- Energy 17.5 GeV
- Cooled with helium to -271°C.

A prime light source A 10% prototype of the ILC

- Industrial production of 800 **SCRF** cavities
- Accelerating gradients close to ILC specs

Contents

- European XFEL
 - Reminder
 - Status of the machine (thanks to Nick Walker)
 - Safety at the European XFEL (see separate presentation)
- ILC in Europe
 - Strategy processes
 - European Action Plan
 - •

Injector in Operation – First Beam in 12/2015

Dump **Diagnostic Section** Spectrometer

Laser Heater

KEK, 16 May 2017

Transverse Deflecting Structure 3.9 GHz Module 1.3 GHz Module

Gun

Accelerator Module on its Way to the Tunnel

1st module July 1st, 2014 – last module August 1st, 2016

Waveguide Tailoring was done for all Modules

Couplers were the by far the most challenging single items in the supply chain of the modules

- A total of 800 RF power couplers was produced at three different vendors
- The largest fraction was procured by LAL Orsay and produced by Thales / RI
- Approx. 20% were procured from CPI
- RF conditioning of all couplers was done at LAL Orsay at a rate of 10+ couplers/week

Coupler delivery rate did not match the module assembly rate

Continuing quality and delivery issues needed to be addressed

Tunnel Installation Process

Optimized global process steps and sequence & daily improvements

Process Management XTL Installation

tasks helped to speed-up the installation.

TSS: ILC in Europe

Result of a DN200 Pressure Test Preceding the first Cool Down

- During the pressure test of a Helium exhaust line **severe** damage to accelerator infrastructure happened late night on October 11, 2016.
- No people were injured since the tunnel was closed during the test.
- Investigations are still ongoing but a first rough estimate of the **needed repair time** is about three months.
- Both ends of the line have fix points to take the forces in longitudinal direction. The downstream fix point broke, and in consequence the pipe end moved by roughly 1.5 m towards Schenefeld.
- The sliding fixtures along cryostrings CS8 and CS9 also broke and the line fell down.

DN200 He Exhaust Line

- DN200 exhaust line goes all along the linac to collect He in case of abnormal operation conditions in the process lines of the accelerator modules. Safety valves with short hoses connect the cryogenic string connection boxes to the exhaust line.
- The exhaust line was designed, constructed and installed by an external company. Installation finished in 2014 with an acceptance test including full pressure check without any apparent problems.
- After completion of connections to all cryogenic boxes a final pressure test was needed to prepare for the upcoming cool-down of the accelerator.

Position of DN200 Pipe right after Pressure Test

Downstream of CS9, along the replacement line, the pipe fell down to the floor, without major damage to other components.

Along CS9 and CS8 the line came to a halt on some of the wave guide sections which are 0.5 m below the original position of the pipe.

Damage close to Cryogenic End Box

• At the cryo end box and also at the string connection box connecting CS8 to CS9 all connections to the DN200 pipe broke.

XFEL Linac Commissioning (to date)

European XFEL: First Laser Light on 3 May 2017

European XFEL: 12 GeV point (max. energy to date)

As Received Usable Gradient in the VT

Usable field – ignore Q_0 criterion? (FE only)

XFEL Q₀ limit

Usable (XFEL)

Usable (No Q0 limit)

	Max	Usable	usable No (
umber of cavities	375	375	372
G> [MV/m]	33.	29.	31.4
_G [MV/m]	6.6	7.4	7.5
G≥ ₂₈ [MV/m]	35.	33.3	34.7
ield @20	94%	89%	91%
ield @28	86%	63%	77%
ield @35	44%	18%	37%

Usable (No Q0 limit)

Q

Second pass?

- No direct 'correct' comparison possible
 - Cut off for XFEL retreatment ≤20 MV/m
 - ILC is ≤28 MV/m
- Can try to use retreatment MC model based in XFEL results

		ILC TDR	XF	EL
		(assumed)	max	usable
First-pass	Yield >28 MV/m Average >28 MV/m	75% 35 MV/m	85% 35.2 MV/m	63% 33.5 MV/m
First+Second pass	Yield >28 MV/m Average >28 MV/m	90% 35 MV/m	94% 35.0 MV/m	82% 33.4 MV/m
First+Second+third	Yield >28 MV/m	-		91%
pass	Average >28 MV/m	-		33.4 MV/m

More re-treatments - but mostly only HPR Number of average tests/cavity increases from 1.25 to 1.55 (1st+2nd) or 20% over-production or additional re-treat/test cycles

Cryomodule average gradient performance

	N _{cavs}	Average	
VT	815	28.3 MV/m	
CM	815	27.5 MV/m	

RMS 3.5 4.8

VT capped at 31 MV/m for fair comparison and power considerations

~3% difference measured this way $3\% \leq \Delta G \leq 8\%$

Degradation matrix

Degradation defined as ≥20% (red)

best place to be a happy cavity in a cryomodule

Lessons Learnt?

- TESLA technology has been successfully industrialised and can be mass produced No reasons why this cannot be extrapolated to ILC numbers
- Success requires DILIGENCE (and attention to detail)
 - Close cooperation with cavity vendors
 - Constant feedback, QA and QC
- Standard 'TESLA' recipe can <u>almost</u> achieve ILC specifications
 - But improvement still needed
 - 30 MV/m average is great, but 7 MV/m RMS spread is too large (why?)
 - Q₀ performance (Nitrogen anybody?)
- String assembly without degradation is not impossible
 - Again, requires diligence!
 - Auditing, QA/QC, feedback, etc.

TSS: ILC in Europe

Contents

- European XFEL
 - Reminder
 - Status of the machine (thanks to Nick Walker)
 - Safety at the European XFEL (see separate presentation)
- ILC in Europe
 - Strategy processes
 - European Action Plan
 - •

TSS: ILC in Europe

Contents

• European XFEL

- Reminder
- Status of the machine (thanks to Nick Walker)
- Safety at the European XFEL (see separate presentation)

• ILC in Europe

- Strategy processes
- European Action Plan
- •

TSS: ILC in Europe

The European strategy process

Europe's strategy updated last in May 2013, approved by CERN Council (i.e. the European funding agencies). Central elements:

- LHC and HL-LHC
- Accelerator R&D
- Strong support for ILC
- Importance of theory
- Role of national laboratories

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded. The Technical Design Report of the International Linear Collider (ILC) has been completed, with large European participation. The initiative from the Japanese particle physics community to host the ILC in Japan is most welcome, and European groups are eager to participate. Europe looks forward to a proposal from Japan to discuss a possible participation.

Next update of strategy expected 2020

- Preparations starting now European countries
- Personal view: Various large contenders for European support:
 - HL-LHC is clearly set
 - CLIC and FCC there can only be one future project / study?
 - European funding agencies.
 - High-energy LHC as very serious option

ILC? Interesting development: ILC European Action plan figured in September meeting with

The European strategy process

Future Circular Collider Study Michael Benedikt 2nd FCC Week, Rome, April 2016

Now is the time to plan for the period 2035 – 2040

7

TSS: ILC in Europe

Discussion in Germany

Various different elements of strategy development in Germany:

- National roadmap: collection of large-scale research projects (e.g. "LHC upgrades", "European XFEL" etc.)
- KET ("Committee for Elementary Particle Physics") drives a HEP strategy process: discussions in and statements from the community.

Last KET workshop:

2/3 May 2016, MPI Munich: e⁺e⁻ physics

- Physics case of future e⁺e⁻ machines
- Presentations from e.g. CLIC, FCC-ee, CPEC, ILC, ...
- Trying to define the German community's opinion concerning the various options
- Surprisingly clear outcome ...
- Outcome will be fed into discussions with ministry;
- but no immediate impact expected.

e⁺ e⁻ Colliders: The Next Generation

KET workshop series on Germany's strategy for the future of particle physics

May 2 & 3, 2016 Max-Planck-Institut für Physik, Münch

J. Mnich (DESY M. Schumacher (U Freib

G. Weiglein (DESY

ram Organ

KET

- S. Kluth
- H.G. Mose

www.mpp.mpg.de/KETeeWorkshop2016

TSS: ILC in Europe

Outcome of German KET workshop

Conclusions of the

KET Workshop on Future e⁺e⁻ Colliders^a

Max-Planck-Institut für Physik Munich, May 2-3, 2016

- 1. The physics case for a future e^+e^- collider, covering energies from M_z up to the TeV regime, is regarded to be very strong, justifying (and in fact requiring) the timely construction and operation of such a machine.ⁱ
- 2. The ILC meets all the requirements discussed at this workshop.ⁱⁱ It is currently the only project in a mature technical state. Therefore this project, as proposed by the international community and discussed to be hosted in Japan, should be realised with urgency. As the result of this workshop, this project receives our strongest support.ⁱⁱⁱ
- FCC-ee, as a possible first stage of FCC-hh, and CEPC could well cover the low-energy part of the e⁺e⁻ physics case, and would thus be complementary to the ILC.^{iv}
- 4. CLIC has the potential to reach significantly higher energies than the ILC. CLIC R&D should be continued until a decision on future CERN projects, based on further LHC results and in the context of the 2019/2020 European Strategy, will be made.

¹ Main topics are ultra-high precision tests of the electroweak Standard Model and of Quantum-Chromodynamics (QCD), precision Higgs Physics (mass, width, couplings, self coupling) and precision top-quark physics, which are all well defined and not based on speculation. Apart from these "guaranteed" advancements of our knowledge, precision tests also carry a huge potential towards physics Beyond the Standard Model (BSM), especially through the effects of radiative corrections with sensitivities beyond the TeV region. At high energies these projects are sensitive to the direct observation of physics BSM, complementary to and extending the reach of searches performed at the LHC.

ⁱⁱ The basic requirements and features of e⁺e⁻ circular and linear collider projects have been extensively discussed at this workshop, and are summarized, in a simplistic scheme, in the following table:

Topic	CEPC	FCC-ee	ILC	CLIC
Higgs Mass, couplings	+	+	+	+
Higgs self-coupling	-	-	+	+
Top physics	-	+	+	+
ew- precision parameters	+	+	+	-
BSM (direct searches)	-	-	+	+
Flexibility to new high mass signal	-	-	-	+
Maturity of project	-	-	+	-
Start by/before 2035	+	-	+	-

ⁱⁱⁱ Technological maturity is reached in general, proven by successful industrial mass production and implementation in the European XFEL, which can be considered as a large scale technological prototype of the ILC. The design provides the possibility of beam polarisation, which is an essential ingredient for precision physics results. The project is under political consideration in Japan. There exist superior detector designs and respective R&D.

^{iv} Circular colliders are especially advantageous for efficient measurements with highest statistics at the "low-energy" (M_Z and below) side of the targeted energy spectrum. This "Tera-Z" operation allows to reduce the uncertainties of electroweak parameters substantially, which are an important ingredient for theoretical predictions at high energies. The efficiency of the linear collider projects at M_Z and below is limited and requires substantial effort. This opens the possibility of efficient task- and cost-sharing between circular and linear colliders, if regional considerations and possibilities lead to the realization of more than one project.

Outcome of German KET workshop

My Pros and Cons Matrix

Торіс	CEPC	FCC-ee	ILC	CLIC
Higgs Mass, couplings	+	+	+	+
Higgs self-coupling	-	+-	+	+
Top physics	-	+	+	+
ew- precision parameters	+	+	+-?	?
BSM	-	+-	+-	+
Flexibility to new high mass signal	-	-	+-	+
Maturity of project (not age!)	-	-	+	-
Detectors	-	-	+	+
Start 2035	-	-	+	-
03.05.2016 C	hristian Zeitnitz – KE	T e+e- Workshop		2

C. Zeitnitz

TSS: ILC in Europe

Other options

KEK, 16 May 2017

Situation in Germany

DESY / Helmholtz:

- e⁺e⁻ physics at ILC and Belle on of the pillars of our current strategy.
- May aspects of physics & detector; some machine development (SRF)
- Update of strategy soon (<1 year, clash with European timeline)
- Will probably rather speak of "future projects"

Universities:

Some federal funding secured, e.g. for physics / theory and positron polarisation; but future not clear

Outlook:

- Currently orientation / strategy building on DESY and national level
- This statement is true for all countries.

It gets harder to justify ILC as "the" future project without clear positive signs from Japan.

TSS: ILC in Europe

DESY STRATEGY BEYOND PoF III

Contents

• European XFEL

- Reminder
- Status of the machine (thanks to Nick Walker)
- Safety at the European XFEL (see separate presentation)
- ILC in Europe
 - Strategy processes
 - European Action Plan

41

Originally requested by Okada-san from the KEK ILC Planning Office A report outlining Europe's possible contribution during the four-year preparatory phase

- Similar to KEK document
- Discussed by Okada-san and E. Elsen
- Suggestion to prepare this within E-JADE context, with Steinar Stapnes as coordinator
- Originally intended timescale: two month, 4+4 European and Japanese colleagues

Comparison to KEK document

- KEK document deals with only one country (in fact only one lab)
- Europe is much more complicated: many countries, labs, funding agencies
- Scope therefore shifted to potential EU in-kind contributions (cost if EU IKC, EU core competencies, who might do what ...) along ILC WBS

	Pre-preparation Phase	Main Preparation Phase			
	Present	P1	P2	P3	P4
ADI	Establish main parameters	Verify parameters w/ simulations			
SRF	Accelerate beam with SRF cavity string and cryomodule	Demonstrate mass-production technology and stability Demonstrate Hub-lab functioning and global sharing			
Nanobeam	Achieve the ILC beam-size goal	Demonstrate the nanobeam size and stabilize the beam posi			
Positron source	Demonstrate technological feasibility	Demonstrate both the undulator and e-driven e+ sources			
CFS	Pre-survey and basic design	Geology survey, engineering design, specification, and dra			
Common technical support	Support engineering and safety	Common engineering supports (network, radia			on safety, e
Administration	Project planning and promotion	General affairs, finance, international relations, public relat			
	Preparation for the ILC pre-lab	Establishing the ILC pre-lab and managing the ILC prepara			

Table 3. Human resources required during the ILC accelerator preparation (FTE)¹⁾

	Pre-P. ²⁾		Main Pr	eparation ³⁾)	Constr	uction ⁴⁾	Notes
	(present)	P1	P2	P3	P4	C1	C2	
Acc: JP	42	54	74	98	122	170	520	JP: needs to mature SRF mass-prod. technol
: abroad	≥ 20	28	41	65	89	172	550	EU/US: already has experience ⁶⁾
CFS: JP	3	11	11	13	17	50	52	JP: is primarily responsible, w/ outsourcing
: abroad	1	3	5	5	5	52	55	abroad: professional contribution
Comm: JP	2	7	10	13	14	100	100	JP: is primarily responsible
: abroad	1	3	4	6	7	109	109	abroad: professional contribution ⁷
Admin: JP	5	8	10	14	18	77	220	JP: is primarily responsible
: abroad	3	4	6	8	10	11	250	abroad: professional and regional contribut
Sum	≥ 77	118	161	222	282	410	922	

Additional comments

1) During the preparation phase, the contribution from abroad is to gradually increase to 20–40% (of total number) and to prepare for further contribution in the construction phase after reaching an international agreement for the ILC construction and work-sharing.

2) Pre-preparation Phase: Current status (based on general advanced accelerator R&D budget)

Europe

Philip Bambade (LAL Orsay) Benno List (DESY) Philip Burrows (Oxford) Angeles Faus-Golfe (Valencia) Brian Foster (DESY) Olivier Napoly* (CEA) Thomas Schörner-Sadenius (DESY) Marcel Stanitzki* (DESY) Steinar Stapnes* (CERN - coordination) Nick Walker* (DESY) Hans Weise (DESY)

<u>KEK</u>

Tomio Kobayas Shinichiro Mich Yasuhiro Okad Akira Yamamot

* Originally proposed joint-WG membership by Okada

Who can speak for "Europe"?

shi*	
nizono*	
a*	
to*	

Purpose of document not entirely clear:

- KEK says it will be useful for them? Will they show it to MEXT?
- Might also be useful for European discussion (starting 2019) – input to CERN Council?
- How to make it carry some weight?

Revision:66 May 11, 2017 by stanitz

Going through three phases of ILC

- Pre-preparatory phase
- Preparatory phase
- Construction phase

... and asking what Europe is (currently) or might be

doing. "Currently" is the easiest part:

opean FEL	Summary of what's goir on (ILC relevant)	GDE/LCC/AD&I (ILC-specific European XFEL ESS	
ess scrf activities in Europe.	- 2. Pre-preparatory phase 2017-2018 Θ	Current activities in Europe Knowledge transfer from the Euro Focus on key R&D areas Pre-Preparatory Phase Summary	ATF2 contributions CLIC EJADE ILC detector & physics act opean XFEL to the ILC

XFEL synergy always as biggest European contribution

Preparatory Phase (4 years)

Four-year phase before construction - R&D and industrial preparation for Euro

Will look at European capabilities for deliverables across the ILC

Estimate 3% (200 MEuro) in overall prep. phase budget, with 40 M\$ European we now consider a build up phase towards construction later (beyond 2022) f

Assume we are talking about final prototypes, pre-series with (preferable) Eur

chaical design team facility properties where relevant

Components	European part	Fraction (%)	Rationale
SC cryo-modules (34% of project)	Assume 1/3 Europe	11.4	European dustry (EX
Cryogenics system (8.6% of project)	Assume 1/2 Europe	4.3	European dustry (LH
1.3 GHz RF (9.5% of project)	Assume 1/3 Europe	3.1	European dustry (EX
Components for ES, PS, DR, RTML, ML, BDS	Too early to detail but need match of capabilities and con- tribution size	4.2	Magnets a mentation, puting, etc
Sum		23	

Table 5: A Model for a European Contribution to the ILC

2

)	
ppean IKC n budget Emphasis that	
ropean industry, plus	
a expertise and in- XFEL and ESS) a expertise and in- HC and EXFEL) a expertise and in- XFEL and ESS) and power, instru- and power, instru- b, controls & com- c	
;	

Construction phase even more complicated.

Possible forms of EU involvement complicated:

- AKA "what is the role of CERN"?
- Trying to demonstrate the ILC contribution is within CERN mandate (ILC as NGO in GDE "Project Implementation Plan")
- For preparatory phase assume MoU-based "collaborations" with annual budget of ~10MCHF/year + 20 FTE (more from non-CERN collaborators?)

TSS: ILC in Europe

[Accelerator Design and Integration SCRF														Germany	many France		Italy		Poland		Russia	
		ource	tion	S			cessing duction		CE	S 3%				WPG-1 LINAC	DESY	CEA Saclay	LAL	INFN Milan	IFJ PAN	WUT	NCBJ	BINP Nov	
		йй ГГ	gra	, ion	° D8	s a	Pro Pro		Simulations 19	Controls 13%				WP-03 Cryomodules	-								_
	6	ito st	Inte	ulat strol		itie	ity I ity I ode	N	/L Integration 2	2%			Covities 189	WP-04 SRF cavities									
		s lie	ML 3TN	CFS D		Sav			RTML 1%				Cavities 187	WP-05 Power Couplers									
CERN	3 3	2	4	5 4	21		1							WP-00 How couplets									
France	21	16	5	2	5 67	74								WP-08 Cold Vacuum									
CEA/Saclay	9		_		9	11			Po	sitron Source 10%				WP-09 Cavity string assembly	,								Γ
			5		5				FU.	Sitton Source 10%	SCRF 43%		Cowitry Drosoc	WP-11 SC magnets									
I AL-Orsay	12	16		1	9 46	45			Electron				Cavity Proces	WPG-5 Infrastructure									
LAPP-Annecy	12	10		7	7 7				Source 5%					WP-10 AMTE									
Germany	4 3	1 22	1 7	5 5 4	1 88		89 7 7			DR 5%			Cavity Produ Cryogenics	WP-13 Cryogenics									_
DESY	1 3	1 22	15	5 5 3	7 79		89 7 7							WPG-6 Sites & Buildings									
FhG				2	2 2					BDS 17%			Cryomodule	WP-45 AMTE hall									
GSI Mannheim				1	1 1																		-
Rostock			2		2								HLRF 1%										
TU Darmstadt	3		-		3																	_	
Italy	19	9		2	2 21	45	2							Table 2: Responsib	olity matrix	k for cryo	modu	ile produc	ction an	d testing	for the	e Europea	J
INFN	19	9		2	2 21	45	2	Fig	ure 3:	The distribution	of the effort	to the ILC GE	DE (2007	(Note only cryomod	ule-releva	nt work p	backa	aes are s	shown.	Note als	so that	including	
Poland				2	0 20									such as ESS will brit	na additio	nal Furor	noan i	institutos i	into nla	v for SC	RE. co	- Section	2
				1	0 10					10			_					institutes i	into pia	y 101 001	1, 300		2
WUT-ISE				4	4 4					4													
Russia		36 21		14	71	10		51	C4 4	100													
Budker		21			21					•													
JINR		36		14	50	10		51		Country	Iracking	Calorimetry	MDI	System In-				Swadan 0 09	V				
Spain	16		4		20			2						tegration		Spain	1.0%	Sweden 0.97	70				
	16		4		20			2		CERN								Switzerland					
Sweden	2		2		3					DESY								1.6%	ance	Countr	v 6	Fraction (9	2/2
UU	2		2		3								1		ia 28.	0%		4.	.0%	Counti	y i	Taction (/0
Switzerland				3	33					Czech Republic					14 201					German	וא	60).(
PSI				3	33					France										Russia	-	28	5.(
UK	80 9	11			100					Germany										France		4	1
ABCD-UK Birmingham	4				4					Israel										Italy		г О	 م ر
Dundee					1					Notharlanda										naly Delet		2	(\
Lancaster	3				3					iverneriands										Poland		2	(
Liverpool	5	1			6					Norway						Gern	nany 0%			Switzer	land	1	.(
Manchester	3				3					Poland						60.	0%			Spain		1	.(
Oxford	31				31					Serbia										Sweder	า	0) (
KHUL	13	44			13					Snain											-		_
	3	11			30											ontributin	a to	the XFFI	total	Table 1.	Fractio	ns ner Co	ur
Total	126 2	1 37 71	7 15	10 22 0	0 412	120	80 7 10	72 7		UK					55 0	JULIU	9 10		ioiai	Iavie I.			اد - د
TOTAL	120 34		1 10	10 23 9	-413	129	10	12 1	Table						a ta d							a project o	;0
									lable 4	E An overview of	the present a	ictivities in the a	irea of ILC	-related detector R&D	and					(Ed: NL	IMBER	S TO BE	l

Figure 2: Estimated total FTE (person years) contribution to the ILC GDE (integration in Europe.

Conclusions

- European XFEL
 - Impressions
 - Status
 - Lessons learnt
- ILC in Europe (Germany)
 - Activities become harder to justify
- European Action Plan
 - To be finalised until end of May (Steinar Stapnes, Marcel Stanitzki)
 - Impact and usefulness not yet entirely clear.

TSS: ILC in Europe

