Towards a seismic stability validation of the AHCAL structure

Karsten Gadow, Martin Lemke, Felix Sefkow

Mini-Workshop on ILC Infrastructure and CFS for Physics and Detectors KEK, Tsukuba, May 16, 2017

Outline

- The AHCAL mechanical structure
- Static computations
- First steps dynamical analysis
- Methodological progress

Design challenges

- Stainless steel
- Fine longitudinal sampling
 - 2cm plate thickness only
- No cracks, minimal uninstrumented regions
- Inside coil radius:
 - compact design to maximise no. of hadronic interaction lengths
 - tight tolerances over large dimensions
- Accessible electronics
 - external: short access
 - internal: longer shutdown or upgrade
- Earth quake stability
 - computational challenge

Small modules

48 sensitive layers 49 absorber plates 26.5 mm pitch

 Small sectors (<18t) for easy transport and assembly in situ

Design features

- Uniform sampling along shower axis
- Structure is made from rolled steel plates
 - flatness with roller levelling within 1mm verified
 - no machining: cost effective
- Assembly with screws
 - moderate tolerances
 - damping oscillations
- Thin side walls (5mm)
- 16 phi sectors, 2 rings
- Flexible structure, matched to flexibility of scintillator cassettes
- Varying layer width no problem for scintillator

Cassettes

- Housing the scintillator and electronics active layers
- Made from stainless steel and contributes to absorbing material
- Sum of absorber plate and cassette thickness = 20 m / layer
 - for both AHCAL and SDHCAL
 - material in absorber plate contributes to rigidity of structure
 - material in cassette contributes to load on structure
- AHCAL Physics prototype and early designs had 16 + 2x2 mm
- Present design and new prototype have 19 + 2x0.5 mm
- Weight is 17 kg /m2
 - cf SDHCAL 48 kg / m2 with 2x 2.5 mm cassette

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

Alternative

- Integration into cryostat done
- Stability calculation to be re-done
- Expect somewhat larger deformations
- On the other hand, stability improves with
 - up-to-date plate thickness
 - 16 -> 19mm
 - possibly even thicker plates
 - smaller radius

Stability: static calculations

- Stability of modules for transportation and handling
- Stability of barrel structure static

ANSYS model

- Parameters for submodule validations:
- Mesh types:
 - shell bodies for all plates
 - solid bodies for transportation and assembly brackets
- Mesh statistics:
 - ~ 575.000 nodes, 295.000 elements
 - refined local sub-models: 1.5M nodes, 870k elements
- Contacts:
 - bonded contacts (all DOF fixed) on lines and faces of shell bodies
 - bolts modelled as spring elements in refined sub-model in case of high load concentrations

Module installation

• need some modification of module connection pates

Ring structure

 model includes ECAL masses

Felix Sefkow May 16, 2017

Ring deformation

• max 10 mm

Local stress peaks

• max tension 360 N/mm² - safe

Local stress peaks

• max tension 360 N/mm² - safe

Local stress peaks

• max tension 360 N/mm² - safe

Dynamical stability

Dynamic analysis

- In principe one needs to study the entire system of yoke, cryostat and HCAL
- Not enough details known: assume rigid transmission of excitation forces to HCAL and study HCAL alone
- Steps:
 - eigen mode analysis
 - response spectrum (with damping)
 - excitation with real earth quake wave form
 - East-West 0,36 g
 - North-South: 1,02 g
 - Vertical: 0,36 g

Felix Sefkow May 16, 2017

EQ data processing

- Earthquake data from NIED (Japan) can be processed using commercial software "RSTAB" from DLUBAL (link: <u>https://</u> www.dlubal.com)
- Input: measured accelerations
- Output: tabular wave form to be directly used as acceleration boundary conditions in ANSYS
- > Greatly simplifies work

EQ data processing

- Earthquake data from NIED (Japan) can be processed using commercial software "RSTAB" from DLUBAL (link: <u>https://</u> www.dlubal.com)
- Input: measured accelerations
- Output: tabular wave form to be directly used as acceleration boundary conditions in ANSYS
- > Greatly simplifies work

Eigen mode analysis

- > Swinging barrel: 3Hz
- > Swinging module: 8Hz
- > Swinging plate: 6Hz
- > Higher modes: 15 Hz

> Several plates: 45 Hz

dation

Computational challenges

- Within reasonable effort, first 200 eigen modes calculated
- In order to obtain response spectrum with a frequency sweep, need to introduce damping: further complication
- Computation failed
- Possibilities to simplify:
 - omit details: use shells, beams, point masses, rigid bodies
 - loss of realism and predictive power
- More efficient approach: **sub-structured analysis**
 - condense group of elements into a "super-element"
 - model behaviour for the overall structure in a matrix describing the characteristic properties of the super-element
 - rigidity matrix exact, mass and damping matrix approximative

Examples

 Method commonly used in aerospace and automotive engineering since 1970s

Examples

Sub-structured analysis method

- "Component mode synthesis
- Using ANSYS parametric design language APDL
- Generation pass: calculate matrices and master degrees of freedom (MDOF) at super-element boundaries
- Use pass: integrate full striche, using MDOFs
- Expansion pass: back-propagate results into super-element

Substructuring – Implementation

Organisation of the CMS analysis within ANSYS

In practice

Filter: Name

🖉 🕩 🖽 🔂 🗍 Ø Project 🖮 🙆 Model (A4, B4, C4) 🗄 --- 🔊 Geometry 🗄 – 🏑 📩 Coordinate Systems E-Q Remote Points E----- Remote Point PN10 🚊 – ⁄ 🦚 Connections 🗄 – Joints --______ Fixed - Vertical_Beam\Vertical_Bea 🗄 --- 🖓 Mesh 🏸 Mesh Edit Mamed Selections Ar Beam EL 🔎 BeamMdof - 🔎 Static Structural (A5) 🕂 Analysis Settings 🔊 Fixed Support 🔎 Moment 🔎 Force PreProcessing_CMS-Commands 🗄 🗐 🔏 Solution (A6) 🖅 🚺 Solution Information 🗄 --- 🖓 Total Deformation 🗄 🦳 🕂 PostProcessing_CMS-Commands

🦾 🔂 Post Output

Prepare geometry

- general simplifications
- find interfaces and MDOFs (few, and not in regions of high gradients)

> Build up FE model

- Define local coordinate systems at boundary faces
- => maintain full update capability
- Define Remote Points at the boundary surfaces to reduce number of MDOF (optimise performance)
- Model components (named selections) using ANSYS work bench and APDL
- Generation, Use und Expansion Pass within ANSYS, command objects APDL defined

Computing times– Example AHCAL structure

- Static model
- Full 3D FE-model
 - Nodes: 609.544
 - DOF: 3.657.264
- > CMS FE model
 - Master-Nodes: 384
 - Master-DOF: 2.304

F: 3D-Model_fine_mesh Static Structural

Model_II

Solution Time [in sec.]	3D-Modell	CMS-Modell
Solut. Use Pass	246	25
Total Time	246	95
Total CP-Time	10.549	975

ANSYS F17.4

General AHCAL-Model

> Results CMS-Model:

t

	s (p	Shell-Model prestressed)	She	ell-Model (free)	CMS-Model (free)				
	Nr.	f [in Hz]	Nr.	f [in Hz]	Nr.	f [in Hz]			
	1	2,97	1	2,83	1	3,13			
ANEYS	2	5,27	2	5,18	2	5,73			
	3	6,11	3	7,07	3	8,06			
	4	7,65	4	7,46	4	8,41			
	5	9,16	5	9,94	5	10,84			
	6	9,85	6	11,60	6	12,91			
	7	11,68	7	13,65	7	15,02			
	8	13,32	8	14,70	8	16,47			
	9	14,65	9	15,37	9	16,83			
	10	14,67	10	17,18	10	18,07			
	11	15,76	11	18,75	11	20,38			
	12	17,37	12	19,29	12	21,14			
	13	18,32	13	20,21	13	22,44			
	14	19,37	14	21,46	14	23,34			
	15	20,29	15	22,48	15	24,44			
	16	21,99	16	23,63	16	26,12			
	17	22,83	17	25,52	17	27,06			
	18	24,05	18	31,37	18	32,28			
ANEVE	19	24,49	19	33,39	19	38,16			
Andreis	20	25,23	20	35,12	20	39,50			
	21	31,22	21	41,07	21	41,03			
	22	35,29	22	42,68	22	41,03			
	23	38,82	23	42,68	23	41,03			
	24	39,76	24	42,72	24	41,03			
	25	40,52	25	42,72	25	41,03			
	26	40,55	26	42,72	26	41,03			
	27	41,00	27	42,72	27	41,03			
	28	41,27	28	42,72	28	41,04			
	29	42,32	29	42,81	29	41,04			
Z→ X	30	43,78	30	43,33	30	41,04			

General AHCAL-Model

t 2016_05_11_Shell-Model Modal Total Deformation Type: Total Deformation Frequency: 7,067185988 Hz Unit m

hadren

÷

	s (p	Shell-Model prestressed)	She	ell-Model (free)	CMS-Model (free)				
	Nr.	f [in Hz]	Nr.	f [in Hz]	Nr.	f [in Hz]			
	1	2,97	1	2,83	1	3,13			
	2	5,27	2	5,18	2	5,73			
	3	6,11	3	7,07	3	8,06			
	4	7,65	4	7,46	4	8,41			
ANSYS	5	9,16	5	9,94	5	10,84			
RL1.0 Katorní:	6	9,85	6	11,60	6	12,91			
	7	11,68	7	13,65	7	15,02			
	8	13,32	8	14,70	8	16,47			
	9	14,65	9	15,37	9	16,83			
	10	14,67	10	17,18	10	18,07			
	11	15,76	11	18,75	11	20,38			
	12	17,37	12	19,29	12	21,14			
	13	18,32	13	20,21	13	22,44			
	14	19,37	14	21,46	14	23,34			
,	15	20,29	15	22,48	15	24,44			
×									
∎z	16	21,99	16	23,63	16	26,12			
ANSYS	17	22,83	17	25,52	17	27,06			
K:/J Acalenic	18	24,05	18	31,37	18	32,28			
	19	24,49	19	33,39	19	38,16			
	20	25,23	20	35,12	20	39,50			
	21	31,22	21	41,07	21	41,03			
	22	35,29	22	42,68	22	41,03			
	23	38,82	23	42,68	23	41,03			
	24	39,76	24	42,72	24	41,03			
	25	40,52	25	42,72	25	41,03			
	26	40,55	26	42,72	26	41,03			
	27	41,00	27	42,72	27	41,03			
Ť.	28	41,27	28	42,72	28	41,04			
×	29	42,32	29	42,81	29	41,04			
	30	43.78	30	43,33	30	41,04			

Status

- Status 4/2016: validated against full shell model for deformations and eigen-modes
- Resumed fall 2016. following parental leave of key engineer
 - Common project with DESY central mechanics service
 - Progress is slow (< 0.2 FTE)
- Go one step back and establish method with a simpler wheel-type toy model first
- Code and data handling have been re-organised
- Study dependence of computational effort on details of model
 - mesh granularity
 - number of nodes to model the behaviour at substructure boundaries
 - in parallel, monitor deformation results and optimise properties of nodes
- Collected lots of experience
 - need to invest in efficient and intelligent boundary modelling in order to save computing effort
- Full analysis chain for toy model appeared in reach for this meeting
- Hope to return to full HCAL structure soon
 AHCAL seismic validation

Test model: ring structure with 8 sectors

- At small scales, represent problem, including several segments, contacts between segments via connection plates, and overall ring shape
- Support analogue to complete AHCAL model, but additional ECAL masses not included
- Can easily be adapted for different investigations
- The full pass through the analysis can in principle be transferred to the AHCAL FE model

- Static analysis to obtain pre-tension under gravity
- Transfer results from the static analysis to the FE model for subsequent modal analysis to obtain eigen-modes and frequencies
- > Transfer results from the modal analysis to the dynamic analysis
 - > use modal super-position to obtain response of the structure to excitation spectrum
- > Present results as Bode plots
 - > amplitude and phase shift as a function of frequency

Result data management

- in past analyses we had problems with huge result files (for Modal Analysis up to 400 GB)
- one part of the problem is the number of Master DOF in an analysis
- a second part is the type of result data, which is needed to do an appropriate pst processing of dynamic FE-Models
- > a simple test model show the influence on requested result type in the analysis set up
- > the following table shows different result file sizes of the test model

	Only Displacement	Nodal Forces on boundary conditions	All Nodal Forces
Static	9 MB	36 MB (+300%)	42 MB (+366.7%)
Modal	6 MB	23 MB (+283.3%)	40 MB (+ 66.7%)
Harmonic	213 MB	872 MB (+309.4%)	1 GB (+ 369.5%)

- > Lessons learnt:
- > As soon as results on stresses even if only in parts of the model are added, data volume increases drastically
- Next to the number of master nodes, biggest driver of data volumes for complex analyses
- Conclusion: first, go for displacement only, then obtain stresses in critical areas

- For final calculations use only mesh set-up which have been validated on a model with a single segment
- Verify that results do not change for even fier cell sizes
- Systematic study using different model types, cell sizes and numbers of MDOF

- Reference: calculation with full 3D structure
- If only one node with coupling to remote point is used on contact surface, CPU time does not depend on number of elements at contact face
 - > accuracy invariant, ~3%
- If several master nodes are used, but without coupling to remote point, better accuracy, ~0.7%
- > Conclusion: use 3 master nodes per contact face

Anal	alysen-Uebersicht Bei allen Analysen in den Ergebnissdaten nur Verformungen gespeichert !!!																				
									Verformung												
							Element		im Vergl.									Anteil			
							size on		Zur		Total-							Data Size			
							Contact	Gesamt-	Referenz-	Solution-	CPU-	Used	Allocated		Size Super-	data size	total data	CMS an	large		
				CMS	Mesh-	Mesh-	face [in	verformung	rechnung [in	CPU-time	time [in	RAM	RAM	CP-Rate	element [in	segments	size [in	Gesamt	defor-		
lfd. Nr	. Was?	Bemerkung	Analyse-Art	(j/n)	Elements	Nodes	mm]	[in mm]	100%]	[in sec]	sec]	[in MB]	[in MB]	[in Mflops]	MB]	[in MB]	MB]	[in %]	mations	Damping	Solver
	1 Referenzrechnung 3D	Referenzmodell 3D	StatMechan.	n	202.960,00	1.117.692,00	4,50	2.409,70	100,00	311,30	598,30	31.135,00	32.405,00	44.541,90	0,00	0,00	2.657,14	0,00) off	no	PCG
	2 Testrechnung 3D	coarse global mesh density	StatMechan.	n	6.006,00	13.062,00	32,00	2.175,90	90,30	2,90	9,70	172,00	2.112,00	6.102,60	0,00	0,00	43,60	0,00) off	no	Sparse, direkt
	3 Testrechnung 3D	medium global mesh density	StatMechan.	n	10.959,00	34.529,00	32,00	2.297,00	95,32	5,60	14,60	510,00	2.112,00	13.818,40	0,00	0,00	92,20	0,00) off	no	Sparse, direkt
	4 Testrechnung 3D	fine global mesh density	StatMechan.	n	36.207,00	64.709,00	22,50	2.344,60	97,30	11,60	26,20	954,00	2.112,00	18.582,30	0,00	0,00	216,00	0,00) off	no	Sparse, direkt
	5 Testrechnung mit einem SE mit RP und Joints	coarse global mesh density	StatMechan.	j	7.471,00	16.251,00	45,00	2.329,70	96,68	16,40	38,30	489,00	2.112,00	1.928,80	0,26	194,00	246,00	78,86	off	no	Sparse, direkt
	6 Testrechnung mit einem SE mit RP und Joints	medium global mesh density	StatMechan.	j	10.959,00	34.529,00	32,00	2.350,70	97,55	25,00	59,80	604,00	2.112,00	1.808,50	0,32	231,00	399,00	57,89) off	no	Sparse, direkt
	7 Testrechnung mit einem SE mit RP und Joints	fine global mesh density	StatMechan.	i	36.207,00	64.709,00	22,50	2.392,60	99,29	69,50	113,00	2.166,00	4.143,00	3.095,40	0,58	975,00	1.149,00	84,86	off	no	Sparse, direkt
	8 Testrechnung mit einem SE mit RP und Joints	coarse global mesh and small number of MDOF	StatMechan.	i	7.975,00	17.239,00	15,00	2.331,70	96,76	17,40	39,20	540,00	2.112,00	2.219,50	0,26	211,00	265,00	79,62	off	no	Sparse, direkt
	9 Testrechnung mit einem SE mit RP und Joints	coarse global mesh and high number of MDOF	StatMechan.	j	10.487,00	22.202,00	6,00	2.335,10	96,90	21,70	46,64	1.082,00	3.122,00	3.264,60	0,32	352,00	418,00	84,21	off	no	Sparse, direkt
1	0 Testrechnung mit einem SE mit RP und Joints	coarse global mesh and very high number of MDOF	StatMechan.	i	15.241,00	30.410,00	4,00	2.334,70	96,89	46,30	82,80	2.277,00	4.320,00	3.892,10	0,32	672,00	759,00	88,54	off	no	Sparse, direkt

Results for different numbers of MDOF

Modelling techniques

- in a previous study it is shown, that the number of defined Master DOF has a significant influence in model size and solution times
- Nodes-Coupling of common face with the use of ANSYS-Workbench features:
 - user defined coordinate systems for each face, on which the nodes have to be coupled => The position of Coordinatesystems depends on the underlying geometric face. Therefore geometric changes/updates are easier to manage
 - Remote-Point Feature in ANSYS Workbench is used to couple the nodes on one common face – internally a surface to node contact is built
 - the Joint Feature (fix joint) is used to couple the adjacent remote points of two superelements – internally a MPC-Formulation is used (MPC = Multi Point Constraint)

- Results with only one node per face led to unphysical rotations around the remote points
 - > use 3 nodes
- Coupling between bodes of adjacent super-elements verified
- Still problems with the assembly of the total model, so cannot store intermediate results
- > Practical issues: 16 segments, 2 faces, 3 nodes: 96 points to be defined
 - > must be possible to individually access these in the full model analysis

Location of remote points and their coordinate systems

Segm1_PN2631

In detail

Remote Points

Items: 25 of 90 indicated

A	Segm1_PN1120	
В	Segm1_PN1130	
C	Segm1_PN1210	
D	Segm1_PN1220	
E	Segm1_PN1230	
F	Segm2_PN1310	
G	Segm2_PN1320	
H	Segm2_PN1330	
I	Segm2_PN1410	
J	Segm2_PN1420	

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- Next steps:
- Complete analysis
- > Outlook:
- Validation
- > use existing structures
- on a shaker

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- Next steps:
- > Complete analysis
- > Outlook:
- Validation
- > use existing structures
- on a shaker

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- Next steps:
- Complete analysis
- > Outlook:
- Validation
- > use existing structures
- on a shaker

