

An All-silicon Detector for the ILC

Marcel Stanitzki Ringberg 01/05/2017

The SiD Detector

SID Rationale

 A compact, cost-constrained detector designed to make precision measurements and be sensitive to a wide range of new phenomena

Design choices

- Compact design with 5 T field
- Robust silicon vertexing and tracking system with excellent momentum resolution
- Highly granular Calorimetry optimized for Particle Flow
- Time-stamping with single bunch crossing resolution
- Iron flux return/muon identifier is part of the SiD self-shielding
- Detector is designed for rapid push-pull operation

Overall Layout

Re-Optimization

e⁻: $\Delta p/p=0.158\%$, e⁺: $\Delta p/p=0.100\%$ $\beta_x^*=16$ mm, $\beta_y^*=0.34$ mm $\sigma_x^*=683.5$ nm, $\sigma_y^*=5.9$ nm

Summarizing...

- Potential to reduce beam pipe radius
 - Especially for lower energies
 - Could suit well to "staging" approach
- Next steps
 - Occupancy studies
 - Physics impact

Muons from the BDS

Marcel Stanitzki

Why Time-Stamping is <u>still</u> good for side you

Background Hits from upstream muons generated in the Final Focus over the entire bunch train

Give me the wall

Spoilers only

With Spoilers and Wall

Impact of the site-selection

DBD Barrel Design

B Field – 11 plates, each 200 mm thick

Red=5.1 Tesla; Blue=4.3 Gauss: More efficient use of iron at 45°

- Red=1 kG; Blue=50 Gauss; Gray ends at 30m:
- 50 G fringe field extends less
- Lower field on surface of yoke where electronics will reside as interface goes from 0 to 45°
- The larger the angle, the heavier the barrel will get, 30 degrees a good compromise

Marcel Stanitzki

14

All Plates < 30 t in 12 Sided Design</p>

			R (m)	Width (mm)	Weight (tons)	Accrued Sector Weight	Accrued Barrel Weight
L	5900	Plate 1	3454	1851	17	17	204
Thickness	200	Plate 2	3694	1980	18	35	423
Gap	40	Plate 3	3934	2108	19	55	656
		Plate 4	4174	2237	21	75	903
		Plate 5	4414	2365	22	97	1164
		Plate 6	4654	2494	23	120	1440
		Plate 7	4894	2623	24	144	1729
		Plate 8	5134	2751	25	169	2033
		Plate 9	5374	2880	27	196	2351
		Plate 10	5614	3009	28	224	2684
		Plate 11	5854	3137	29	253	3030

12 edges

			R (m)	Width (mm)	Weight (tons)	Accrued Sector Weight	Accrued Barrel Weight
L	5900	Plate 1	3454	2861	26	26	211
Thickness	200	Plate 2	3694	3060	28	55	436
Gap	40	Plate 3	3934	3259	30	84	676
		Plate 4	4174	3458	32	116	931
		Plate 5	4414	3657	34	150	1200
		Plate 6	4654	3855	35	185	1484
		Plate 7	4894	4054	37	223	1782
		Plate 8	5134	4253	39	262	2095
		Plate 9	5374	4452	41	303	2423
		Plate 10	5614	4651	43	346	2766
		Plate 11	5854	4850	45	390	3123

8 edges

Feet Instead of Arches Edge-Edge Connectors in φ to Handle Changing[•] Plate Lengths

DBD Arches with Plates Joining Layers

Support Feet & Plates with Connectors

Calorimeter Reconstruction

Pion (50 GeV)

Electron (50 GeV)

Muon (50 GeV)

- Particle calorimeter hits form characteristic shapes
- Mesh conversion results in easily quantifiable geometric information
 - Volume to surface area ratio, Number of parts, Energy density, Volume vs. convex hull volume

DESY

DD4HEP Status

- Current Status
 - Implemented geometry and drivers
 - Updated to latest digitizers
 - commissioning full conformal pattern recognition (as implemented by CLICdp) & Pandora PFA

Marcel Stanitzki

Dedicated Software Workshop

- Meeting at Pacific Northwest National Laboratory
 - Richland, WA
 - Good attendance
 - "Working" Workshop
 - Less talks
 - Lots of tutorials
 - Big thanks to
 - Jan Strube & Aidan Robson for organizing

Running scenario

- 3 Month Running per Detector
- 2 MD Weeks
- Setup, Tunings, End-Of-Run 1-2 Weeks
- \sim 8 Weeks with ~ 90 % machine availability for physics (That is ambitious) \rightarrow 7 weeks of data

Alignment Periods

- Initial (In the garage position)
- Setup (After move into beam position)
- During MD
- Gorilla in the room: "Stability between bunches..."

FSI experience

Plot 5: Pixel Scans and SCT shutdown

Event: Two calibration scans in the silicon pixel detector (Pixels), followed by the shutdown of the silicon strip detector (SCT).

Up to +/- $3\mu m$ between the two smallest SCT barrels, closest to the Pixels. The effect is reduced between the middle and outer pairs of SCT barrels.

Heat dissipated in the Pixels by these scans appear to cause small deformations which propagate via the support structure to the SCT.

With the cooling off, the SCT warms gradually and after 24hrs the temperatures and movements tend to flatten.

The largest movement, of $+25\mu$ m, may be due to thermal expansion of cooling pipe close to interferometer components.

Zhijun Liang for Gibson et al.

Frequency Scanning Interferometry in ATLAS

Why no Z calibration run

- With Lumi_z = 0.01 Lumi_{500 GeV}
 - Just not competitive
- If there is more Luminosity ?
 - A Z run after every push-pull?
 - After every MD?
- Moving the machine from 500 GeV to 91 GeV and back
 - Non trivial (several Days/few weeks)
- With the desired accuracy
 - need to have other means of alignment
- SiD has started to look at different strategies to augment alignment
 - ATLAS-like FSI
 - Changes to electronics to increase efficiency for comics
 - Currently back-of-the-envelope calculations only

SiD does not request any running at the Z for calibration purposes, as we don't have a case. SiD however requests, that machine design will not be altered in way, which would prevent Z running at all

Summary

- SiD is compact detector design for the ILC
- A lot of activity in detector R&D and in optimization
 - but limited by effort and funding available
- SiD and ILC are in a "hold pattern"
 - Awaiting a decision
 - Dedicated Funding will only become available post this
 SiD Webpage http://silicondetector.org/

Waiting for that green light from Japan III

