

HELIUM PROPAGATION AFTER A SUDDEN RELEASE

Results of tests of the propagation mechanism after a sudden release from the cryogenic system of HERA's proton ring

(P. Albers, M. Ewers, Y. Holler, G. Horlitz, U. Laatzen, K. Sinram,

W. Stahlschmidt – Deutsches Elektronen-Synchrotron DESY, Hamburg)

Klaus Sinram

Mini-Workshop on ILC Infrastructure and CFS for Physics and Detectors, KEK, May 16, 2017

Europe-Japan Accelerator Development Exchange

HERA AT DESY

Areal view of the DESY site. Indicated are the positions of the 2 storage rings HERA (length 6336 m) and PETRA (length 2604 m).

11 May 2017

K. Sinram

THE HERA TUNNEL

Standard cross section of the HERA-tunnel (arc-section) containing beamguidance-magnets of the proton-accelerator (a) and electron-accelerator (b), Helium-transfer-line(c), quench-line (d) and driveway (e).

THE HERA TUNNEL

Introduction

- Extensive installations for liquid Helium inside the HERA -tunnel for the operation of SC HERA proton accelerator magnets
- In case of damage: substantial flow-out (~ 120 kg liquid He) into the tunnel within 10 s
 - oxygen deficiency, extreme cold
 danger for persons in the tunnel
- Requires constant monitoring of oxygen levels and potentially the carrying of a respirator?
 - ➔ Necessity depends on propagation conditions of Helium inside the tunnel.
- Two tests to determine propagation properties carried out.

•

٠

First test – setup

- Aim: Get rough idea of propagation speed in the tunnel.
- Setup: Arbitrary selection of measuring sections 20m against and 100m towards tunnel ventilation.
- 10 measuring positions were specified at z = -20 m, -10 m, -5 m, -2 m, 2 m, 5 m, 10 m, 20 m, 50 m, 100 m.
- Measurements in three heights (h = 0.8, 1.6, 3.5 m)
- Technical details:
 - 30 electrochem, sensors for oxygen-level measurements
 - 30 NiCr-Ni thermal-elements for temperature measurements
 - Data-logger with 64 channels for recording

First test – procedure

- The liquid Helium was brought in by a mobile Dewar-container with a capacity of 500 I at 6 bar.
 - Outflow controlled by electro-pneumatically controlled valve; outflow direction upwards up to 2.5 m, then free spreading out into the tunnel.
- Two camcorders (at 30 and 50 m) used to record speed and shape of propagation of Helium cloud.
 - Control of speed via distance marks
- The 500 I = 62.5 kg liquid He leaked out in 10s into a volume of ~370 m³ after heating up to tunnel temperature
 - The air speed measured to be at $0.5 \pm 0.1 \text{ m} \cdot \text{s-1}$.
- Observations:
 - The Helium heats up quickly and immediately ascends towards the ceiling
 - The Helium does not mix with the tunnel air and expands far quicker than given by the tunnel ventilation
 - The Helium proceeds a lot further than 20 m against the airflow.
 - Substantial effects appeared only on the sensors at a height of 3.5 m.

z	t	Vaverage	V _{02,min} (1.6 m)	T _{min} (1.6 m)	V _{O2,min} (3.5 m)	T _{min} (3.5 m)	
-20	13	1.5	(20.9)	(16)	6.3	-104	
-10	6	1.7	(20.9)	(16)	5.6	-115	
-5	3	1.7	(20.9)	14	4.9	-126	
-2	1		20.6	0	4.7	-163	
2	1		20.8	13	4.2	-156	
5	2	2.5	20.0	-7	5.6	-131	
10	4	2.5	20.8	6	6.4	-107	
20	8	2.5	(20.9)	13	7.2	-97	
50	23	2.2	(20.9)	15	8.8	-71	
100	55	1.8	(20.9)	(16)	14.0	-6	
[m]	[s]	[m·s⁻¹]	[%]	[°C]	[%]	[°C]	

Results of the first test for h = 1.6 m and 3.5 m

First test: O2 concetration vs time

First test: temperature vs time

Second test:

- Propagation speed established in first test
- Now extend measuring range from -100m to +200m with measuring stations at -100 m, -60 m, -30 m, -10 m, -5 m, -2 m, 2 m, 5 m, 10 m, 30 m, 100 m, 150 m, 200 m
- Simulate Helium out flow 1 m above roadway level facing downwards, according to the worst-case-scenario of the leakage of one of the lowest arranged superconducting magnets.
- Double amount of Helium to 1000 I with a second, identical Dewarcontainer
 - corresponds to the maximum possible amount of flow-out (one HERA octant).
 - Second container opened with delay of 10 s, and with longer flow-out time (~60 s)

Second Helium Test Video

K. Sinram

Second test: results

According to the changed test conditions, also in low heights near the outbreak, up to ±10 m the O2-levels and the temperature partially drop very strongly

7	h = 0.	8 m	h = 1.6 m		h = 3.5 m	
2	V _{O2,min}	T _{min}	V _{O2,min}	T _{min}	V _{O2,min}	T _{min}
-100			(20.9)	(18)	10.0	-27
-60			(20.9)	(18)	8.1	-38
-30			(20.9)	(18)	8.2	-51
-10			17.4	5	7.3	-53
-5	17.6	-37	12.6	-63	6.9	-63
-2	14.6	-99	13.3	-64	6.9	-66
2	9.0	-112	11.5	-111	7.1	-77
5	14.5	-25	12.9	-44	7.5	-72
10			13.5	-36	7.7	-60
30			19.5	8	8.7	-32
100			(20.9)	(18)	11.4	-22
150			(20.9)	(18)	12.6	-11
200			(20.9)	(18)	16.7	7
[m]	[%]	[°C]	[%]	[°C]	[%]	[°C]

Also stronger mixing of Helium with air \rightarrow reduced propagation speed of 1m/s. 11 May 2017

Second test: O2 vs time

Temporal development of the O2-concentration at z = 10 m, h = 1.6 m

Second test: temperature vs time

Temporal development of the temperature at z = 10 m, h = 1.6 m

K. Sinram

Conclusions

- Effects of dropping O2-levels and temperature restricted to a few 10 s.
- Endangerment of persons in the vicinity can be classified as not serious (except for direct contact at outflow),
 - appearance of dense fog cloud and heavy noise
 - \rightarrow compel people to immediately leave the hazardous area.
 - Those alarm flags can be seen as sufficient warning for persons working in the upper part of the tunnel cross section at a greater distance from the outbreak
- Second test also showed that a stationary system for monitoring the O2content of the fresh air is not necessary inside the HERA-tunnel.
 - The usage of oxygen rebreathers is not reasonable because the time needed to put on that equipment is sufficient to leave the hazardous area.