18 - March - 2017

ILC-TPC用高開口度GEM型ゲート装置の ビーム試験における特性評価

Characteristic evaluation of a GEM-type gating device with large aperture at beam test for the ILC-TPC

日本物理学会第72回年次大会大阪大学(豊中キャンパス)

72nd Annual Meeting of Physical Society of Japan in Osaka University

Aiko Shoji

O庄司愛子, 成田晋也, 根岸健太郎, 藤井恵介^A, 与那嶺亮^K, 小林誠^A, 松田武^A, 小川智久^B, 青木優美^B, 杉山晃^C, 房安貴弘^C, 長崎祥之^C, 高橋徹^D, 渡部隆史^E, 加藤幸弘^F, 池松克昌^G, Ronald Dean Settles^H, Junping Tian^I, 荒井 大輔^J, Paul Colas^K, Serguei Ganjour^K, Ralf Diener^L, Oliver Schäfer^L, 川田 真一^L, Felix Müller^L, Leif Jönsson^M, Ulf Mjörnmark^M, Huirong Qi^N, 木原 大輔^{C, O}, 他 LCTPC collaboration

Iwate Univ.

岩手大, 高工研^A, 総研大^B, 佐賀大理工^C, 広島大先端^D, 工学院大^E, 近畿大理工^F, 東北大多元研^G, MPI Munich^H, 東大理^I, Fujikura Ltd.^J, CEA^K, DESY^L, Lund Univ.^M, IHEP^N, Siegen Univ.^O

The past study of gating GEM

We had measured the electron transmission rate by using ⁵⁵Fe and laser.

• Measurement using small gate device (10 cm \times 10 cm) at B = 0, 1.0 T

1 T electromagnet/KEK

Measurement using full size gate device at B = 0 T

(Reported at the past JPS meeting)

The past study of gating GEM (result)

• Transmission rate as a function of the gate GEM voltage, ΔV .

- 100 100 Electron Transmission rate [%] Electron transmission [%] . = E. = 230 V/c 95 B = 0 T= 230 V/c 80 90 [Sim] B = 3.5T, E, = E, = 230 V/cr 85 60 80 Errors are statistical only. 75 The curves are only to 70 guide the eye. 65 Black circle: ⁵⁵Fe 60 20 Red square: Laser Garfield++: Hexagonal holes, 335 μm pitch, 29 μm rim-width, PI 12.7 μm thick 55 Green • Blue simulation 50 15 -15 -10 -5 5 10 15 V_{GateGEM}[V] Gate-GEM Voltage[V]
- Small gate device (10 cm × 10 cm)

• Full size gate device

- The transmission rate was found to be ~85 % at Δ V=3.5 V.
- The measurement using a small gate device with B field (B=1.0 T), sufficient electron transmission rate was obtained.

Measurement of transmittance using e⁻ beam

4

We measured the electron transmission rate using the electron beam with B field of 1.0 T.

The pressure and the temperature in the TPC were monitored during the experiment.

Configuration of the GEM module

With gating GEM

Field Shaper

Electron transmission rate is obtained by comparing the signal charges for both conditions

(Voltage, Electric field)

Anode

Cathode Drift region $E_D = 230 \text{ V/cm}$ Gate-GEM $\clubsuit \Delta V = +3.5 \text{ V}$ Amp-GEM1 $\clubsuit \Delta V_{GEM1} = 355 \text{ V}$ Transfer region $E_T = 900 \text{ V/cm}$ Amp-GEM2 $\clubsuit \Delta V_{GEM2} = 315 \text{ V}$ Induction region $E_I = 2700 \text{ V/cm}$

Readout Pad

100 μ m thick(LCP)

The electrode is divided on one side into four parts to prevent the discharge from affecting whole anode plane.

1.15~1.25 mm 5.26 mm × 5152 pads 28 rows

How to calculate the transmission rate

The peak value was obtained by fitting with Landau function to the distribution.

 $(Electron transmission rate) = \frac{Signal charge (MPV) with gating GEM}{Signal charge (MPV) without gating GEM} \times 100 [\%]$

Drift length dependence of signal charge

⁽Pad Row 16)

Charge is smaller with gating GEM than without gating GEM
⇒ Calculate electron transmission rate from the ratio of these.

Drift length dependence of the transmittance

8

In the calculation of the transmission rate, we used the corrected charge values considering the fluctuation of the pressure / temperature during the experiment.

• Electron transmission rate does not seem to depend on the drift length.

The signal charge for each pad raw

- The influence of charge loss due to the electrode gap of GEM can be seen.
- \Rightarrow Calculate electron transmission rate from the ratio of these.

Pad row dependence of the transmittance

10

(Drift length 25 mm)

- The electron transmittance was almost constant (average 82.1 \pm 0.14%)
- But structure in the plot can been seen \Rightarrow not understood yet

Summary

- ➢ We have investigated the performance of the full-size gating GEM using the electron beam with B=1.0 T.
- The electron transmission rate was measured from signal charge distributions obtained with and without gating GEM.
- The transmission rate was found to be reasonably high (>80%), and it does not have dependence of the drift length or the readout pad position.
- The values obtained in this study are consistent with that calculated from Neff and results for the small sample in the past study.

Future plan

- Considering deriving stopping ratio to positive ions.
- Investigating the electron transmittance with higher magnetic field, such as 3.5 T.
- Optimizing the parameters in the simulation to get good consistency with the experimental data.

Thank you for your attention !