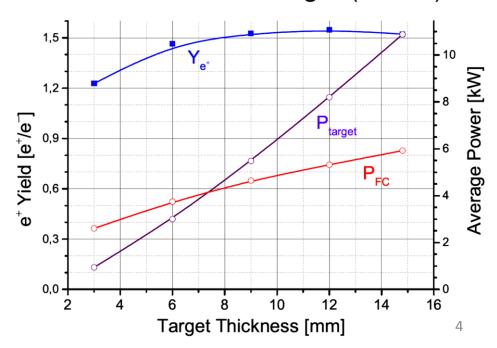
Positron WG Meeting 4

- Undulator scheme parameters
- QWT as bottom line
- Work Plan presented by Sabine

Undulator Scheme Parameters

- Need to fix the parameters for 250GeV CM
 - Basis for the design of the target wheel
- Big progress by Andriy's simulation with thin target
- Started as the problem of PEDD on FC
 - PEDD at the tip of FC is serious at Ee=125GeV is ~33J/g/pulse (1312 bunches)
 - PEDD limit of Cu 7-12 J/g
 - There are several possible measures
 - Undulator closer to the target
 - Compact dogleg designed by Okugi
 - gives ~12% reduction of PEDD, ----- not enough
 - Thinner target

Possible Measures for PEDD Problem


- Possible cures
 - Shorter distance from undulator to target: Done
 - Andriy's simulation showed only ~15% reduction of PEDD
 - Thinner target: Done
 - Less development of shower angle
 - But reduces positron yield
 - Larger beam hole of FC
 - Compatible with 3Tesla field?
 - Lower K of undulator
 - smaller angle spread and higher photon energy (1/(1+K²))
 - But reduces photon number (propt. K²)
 - Photon collimator (originally for higher polarization)
 - Scrape out low energy photons (useless for positron production and cause larger angle in target)
 - But reduces positron yield
- Minimum baseline
 - DC QWT: how much is the luminosity reduction?

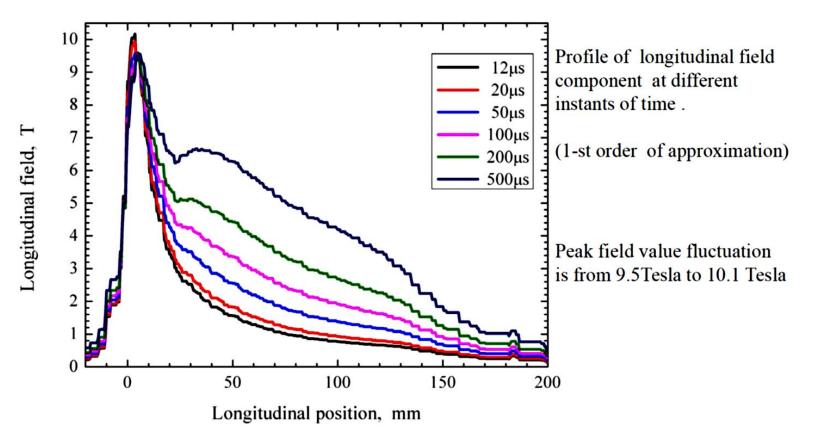
Andriy's Results for Thinner Target

Expect

- Smaller angle spread of shower (hence less PEDD on FC)
- Smaller power deposit on target
- Less positron gain. Hence, longer undulator needed
- But simulation shows
 - surprisingly flat gain in the range 6mm < t < 14mm for fixed undulator length
 - why?
 - Effective distance between target and FC decreases
 - Reduced multiple scattering
 - Positron energy loss in target
 - t < 6mm requires undulator length > 231 m


Fixed Undulator Length (231 m)

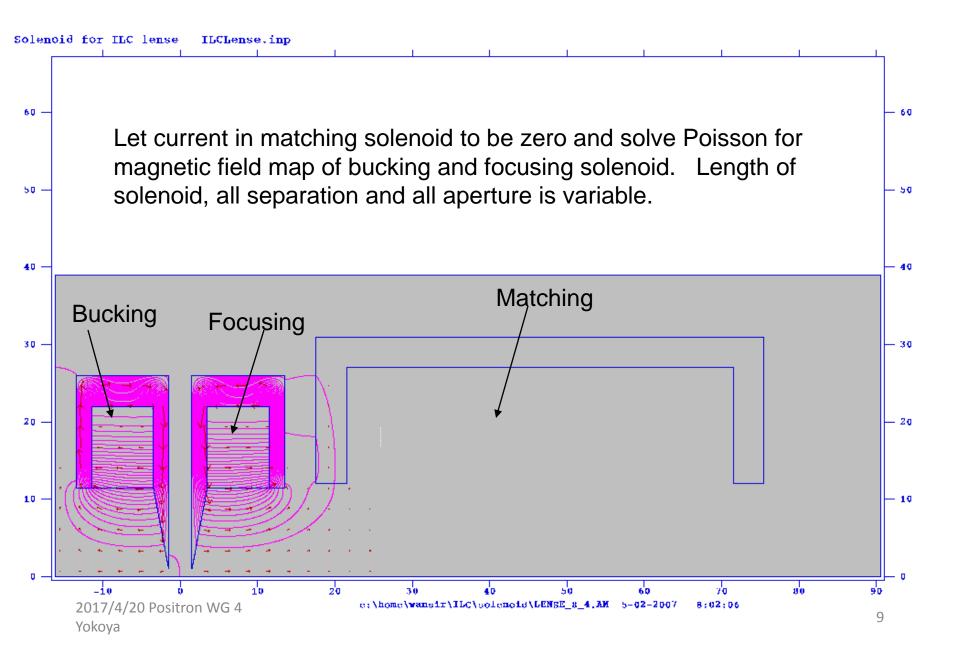
 With fixed gain (e+/e-=1.5) 					from figure
	thickness	undulator length	PEDD on FC	Power on target (2625 bunches)	
	12 mm	0 %	+1 %	7.9 kW	
	9 mm	0 %	-3.5 %	5.3 kW	
	6 mm	+4 %	-9 %	3.1 kW	
	3mm	+24 %	-19 %	1.2	


Varied Undulator Length $(1.5 e^{+}/e^{-})$

Varied Undulator Length (1.5 e⁺/e⁻)

- Conclusion
 - Thinner target greatly reduce the power deposit on target. Thickness 6-7mm looks OK. Power deposit ~1.6kW with 1312 bunches (cf. 14mm → 5.4kW)
 - Heat conduction $Ti \rightarrow Cu$ must be confirmed
 - Undulator should be slightly longer (~4%)
 - Undulator center should be shifted upstream a bit (same compact dogleg length)
 - But the problem of PEDD on target is not solved yet (only 9% reduction)
 - Need some more measure to reduce PEDD
- Now, shall we adopt 6-7mm thick target as the standard parameterfor 250GeV?

A Problem of Long Pulse FC



A skin layer depth becomes deeper in time and as result a magnetic flux through copper conductors also redistributes. These leads to longitudinal field profile deformation through a pulse time. Big profile deformation is observed starting from 100µs pulse time. P.Martyshkin 2014

Profiles should be recomputed with 2-nd order of approximation to confirm deformation in time 2017/4/20 Positron WG 4 Yokoya

QWT as Bottom Line

- One of the problem of FC is the (t,z) dependence of the field
 - May not be easy to solve
 - Who can do this? Pavel????
- What about QWT?
- According to the communication Omori \leftarrow \rightarrow Wanming,
 - Beam hole diameter ~2cm
 - Some simulations with different solenoid length, Bmax, distance between focusing & matching, seem to have done
 - But full optimization was not done
- Need to know the minimum positron yield with target load fixed as the bottom line design for the case FC R&D fails

