

short update: 250 GeV parameters Daniel Jeans, May 9, 2017

kick angle of beams as function of vertical offset between them

R w emit-x reduce by 2 beta*-x reduce by sqrt(2) beta*-y increase by sqrt(2)

Iuminosity as a function of vertical and horizontal beam-beam offsets compare TDR and new parameter sets

(total luminosity, integrated over all energies) incoherent pair backgrounds in detector @ 250 GeV

simple extrapolation in uniform field no back-scatter from forward calorimeters

UPDATE: compare to TDR-500 beam parameters

Distribution of incoherent pairs around beampipe

simple extrapolation in uniform 3.5T field, no beam crossing, no material interactions, no backscatter from e.g. FCAL

Incoherent pairs

slice distributions in z

compare beam parameters

extrapEnvelope2_posZ_positron_proj0_Z_10mm

set

extrapEnvelope2 posZ positron

set1: TDR set3: TDR+ ϵ_x set17: TDR+ ϵ_x/β_x set18: TDR+ $\epsilon_x/\beta_x/\beta_y$ TDR-500

10⁴

10³

10²

10

10-

80

90

100

with new 250GeV parameters: number of pairs generally 2~3x higher "cut-off" moves out by ~1mm similar/worse than 500 GeV question from ILD meeting:

if detector backgrounds turn out to be too severe with new parameters, will it be possible to go back to TDR-like parameters, with lower backgrounds (and lower luminosity)

end

Update

- CAIN #particles dependency
- effect on physics of different luminosity spectra @ 250 GeV
- beam kick for large y offsets

Daniel Jeans, 11 April 2017

last meeting: observed weird dependence on CAIN results as function of # macro particles

mean and rms of luminosities calculated in 10 CAIN runs/point:

only present in most recent beta version of the code (244b)

previous version (I checked 242, 243) look as expected \rightarrow stay with older versions for the time being

effect of 250 GeV luminosity spectra on physics

Higgs mass extraction in Higgs-strahlung process e+ e- \rightarrow HZ , Z \rightarrow mu mu is, I think, most sensitive to knowledge of collision energy

do simple full-sim pseudo-analysis to estimate effect of different luminosity spectra

recoil mass distribution affected by:

- beamstrahlung detector resolution
- ← larger for new parameter sets
- \leftarrow smallest for Z \rightarrow mu mu

is increased beamstrahlung compensated by increase luminosity?

recoil mass distributions: after full simulation and reconstruction

Toy MC experiments, assuming flat background expected mass measurement errors using different beam spectra no ISR, no Beamstrahlung ISR, no Beamstrahlung set2: TDR set4: TDR+ ϵ_x L0.01 ↑ 41% set15: TDR+ ϵ_x/β_x L0.01 ↑ 69% set16: TDR+ $\epsilon_x/\beta_x/\beta_y$ L0.01 ↑ 55%

new parameters are better than the TDR

 \rightarrow expect larger improvement in other analyses

beam kick vs. vertical displacement for different 250 GeV parameter sets

(request from Okugi-san :

if I understand correctly related to tolerance to vibrations)

look at distribution of beam particles' θ = atan(py/pz) after the collision using CAIN comparing TDR and TDR+ $\epsilon_x/\beta_x/\beta_y$ parameters

TDR parameters, vertical offsets: 0, 2, 5, 10, 20, 50, 100, ..., 1000, ..., 10000 nm plot distribution of atan(Py/Pz) after CAIN simulation

same for new parameters **TDR+\epsilon_x/\beta_x/\beta_y**

electrons / positrons

compare the two parameter sets

angular kick [rad]

movie of simulated bunch crossings (CAIN) comparing different parameters