### Studies of Highly Granular Calorimeters in Long Baseline Neutrino Near Detectors:

### Simulation and Scintillator Tile Studies

Lorenz Emberger



Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

CALICE Collaboration Meeting, Tokyo, 2017

# Introduction

• Long Baseline Neutrino experiments target the precise study of neutrino mixing, including the potential discovery of CP violation



Far Detector: measures neutrinos after oscillation, would see evidence for CP violation in  $v_e$  / anti- $v_e$  appearance

**Near Detector**: measures neutrinos before oscillation, required to understand initial flux and cross sections to understand FD signal



# Introduction

• Long Baseline Neutrino experiments target the precise study of neutrino mixing, including the potential discovery of CP violation



Far Detector: measures neutrinos after oscillation, would see evidence for CP violation in  $v_e$  / anti- $v_e$  appearance

**Near Detector**: measures neutrinos before oscillation, required to understand initial flux and cross sections to understand FD signal



# Near Detector ECal

• Near detector systems typically complex systems with various subdetectors - among them **electromagnetic calorimeters** 





# Near Detector ECal

• Near detector systems typically complex systems with various subdetectors - among them **electromagnetic calorimeters** 



- Primary goal of the ECAL: identify π<sup>0</sup> produced in neutrino interactions
  - particularly important: Understanding of π<sup>0</sup> production in neutral current interactions - such events may fake signal in far detector



# Near Detector ECal

• Near detector systems typically complex systems with various subdetectors - among them **electromagnetic calorimeters** 



- Primary goal of the ECAL: identify π<sup>0</sup> produced in neutrino interactions
  - particularly important: Understanding of π<sup>0</sup> production in neutral current interactions - such events may fake signal in far detector
- Our interest: can high granularity help?
  - for example in the location of the point of origin of  $\pi^0$ ?
- The challenge: Typical energies are low: π<sup>0</sup> with a few 100 MeV kinetic energy - deal with photons as low as 50 MeV



### Detector Concept



1mm 10 mm lead absorber plastic scintillator



### Detector Concept



1mm 10 mm lead absorber plastic scintillator



 Active material is segmented in tiles (10mm x 10mm)



### Detector Concept



1mm <sup>1</sup> <sup>1</sup> 10 mm lead absorber plastic scintillator



 Active material is segmented in tiles (10mm x 10mm)

- More realistic: Orthogonal scintillator strips with WLS and SiPM readout
- R&D starting at MPP





Highly granular ECal in LBN Near Detectors

# Simulation and Reconstruction

Detector implementation in Geant 4.10.03:

- Currently 50 layers simulated
- Layer structure:
  - 1 mm lead
  - 10 mm scintillator
  - 10 x 10 mm<sup>2</sup> granularity, using a Sensitive Detector

Reconstruction:

- Simplified
- Using Monte Carlo truth information to assign cells to photons in  $\pi^0$ -Reconstruction
- Calculation of 2D center of gravity for each layer
- Straight line fit through COGs weighted by energy deposit





# Single Photon-Angular Resolution

• Determination of angular resolution is necessary for pion vertex reconstruction





# Single Photon-Angular Resolution

• Determination of angular resolution is necessary for pion vertex reconstruction





# Single Photon-Angular Resolution

• Determination of angular resolution is necessary for pion vertex reconstruction



- Resulting resolution is independent of simulated inclination
- Noise and constant term are 0, because no noise or readout is simulated

26.09.2017



## Single Pion Event



 Distinguish photon1 from photon2 by MC truth

#### 300 MeV Pion event



# Single Pion Event



Take point of closest approach of the reconstructed tracks as decay vertex



- Plot difference between true vertex coordinates and reconstructed coordinates
- Pion propagates in Z direction



#### DeltaX\_VertexReconstruction



- Plot difference between true vertex coordinates and reconstructed coordinates
- Pion propagates in Z direction



#### DeltaZ\_VertexReconstruction

 Reconstruction in Z direction (pion direction) worse than X and Y direction



- Plot difference between true vertex coordinates and reconstructed coordinates
- Pion propagates in Z direction



#### 3D deviation from gun position

 Reconstruction in Z direction (pion direction) worse than X and Y direction

 Spatial deviation from true vertex has a long tail



- Try to enhance the vertex reconstruction
- Take 3D vertex position as parameter for minimization
- Try to minimize the distance of the vertex to the reconstructed tracks



#### 3D deviation from gun position



- Try to enhance the vertex reconstruction
  - O deviation from our position on from oun positio Take 3D vertex position as Entries 610 610 16 parameter for minimization Mean 98.06 ± 4.99 94.93 ± 4.796 14 RMS  $118 \pm 3.529$ 113.3 ± 3.391 12 Try to minimize the distance 10 of the vertex to the reconstructed tracks Result: no significant 500 100 700 700 difference 200[mm]



3D deviation from gun position\_fit

26.09.2017

٠

٠

### Invariant Mass Reconstruction



• Take Invariant mass information to further enhance the vertex reconstruction





### Next Steps

- Use new  $4\pi$  geometry to better study  $\pi^0$  performance
- Improve photon track and vertex reconstruction
- Extended analysis of different granularities
- Study different layer thickness and absorber material



# Scintillator Tile Studies at MPP

- At the moment primarily scintillator tiles for SuperKEKB commissioning
- In addition: study of new scintillating materials (PEN)
- WLS Fiber based projective readout of larger scintillator elements



# Scintillator Tile Studies

• Assembly and calibration of a CLAWS detector module at MPP using BC-408 Tiles



Module equipped with SiPMs



# Scintillator Tile Studies

• Assembly and calibration of a CLAWS detector module at MPP using BC-408 Tiles



Module equipped with SiPMs



BC-408 Scintillator tile

- 8 channels per module, SiPM readout in the dimple of the scintillator tile
- Preamplification on the PCB



## Scintillator Tile Studies

• Assembly and calibration of a CLAWS detector module at MPP using BC-408 Tiles



- Fully equipped CLAWS module with readout cables and mounting structure
- Currently being installed at KEK for the Belle II comissioning (BEAST II, February 2018)



# Calibration with Atmospheric Muons

- To calibrate the light yield, atmospheric muons are used
- Measurement takes place in a climate chamber, under controlled conditions



- Two single SiPM boards are mounted above and below a ladder channel to get a coincidence trigger
- Signals are digitized with Picoscopes (500ps resolution)
- For each channel 1000 muon events and 1000 background events are recorded



# Light Yield Measurement



Cumulative plot for 4 ladders (32 channels)

- RMS below 10% for 32 channels
- Sufficient for Hadronic calorimetry
- Measurement used to correct BEAST II data

# Conclusion

- Simple Pion reconstruction not sufficient
  - improve track reconstruction
  - add more variables to Chi2 of vertex reconstruction (Invariant Mass,...)



# Conclusion

- Simple Pion reconstruction not sufficient
  - improve track reconstruction
  - add more variables to Chi2 of vertex reconstruction (Invariant Mass,...)

- Knowledge gained from small scintillator tiles for CALICE can be used
  - extend to WLS readout
  - try different materials



# Thank you

