

Fully depleted CMOS sensor using reverse substrate bias

Konstantin Stefanov 4 May 2017

Introduction

- Work inspired by the Silicon Pixel Tracker (SPT) concept at ILC:
 - Integrating tracker with ~30 Gpixels, average power only few hundred watts, gaseous cooling
 - Low mass detector
 - Made possible by very low power sensors
- Low power implies very high SNR
 - Increasing the signal while reducing the noise
 - Simple in-pixel electronics with low operating currents
- Candidate technology the pinned photodiode pixel (aka 4T)
 - Separates charge collection from charge-to-voltage conversion, unlike traditional diodes
 - $\Delta V = \Delta Q/C$; C can be very small -> ΔV is large
 - Charge transfer from the collecting element to the sense node
 - Adds complexity, limits speed

Back side biased CMOS image sensor development

- We had a project to design back-side biased, thick sensitive area CMOS image sensors achieving full depletion
 - Funded by the UK Space Agency
 - 1-year project aiming at space applications
- Demand for thick (>100 μm), fully depleted CMOS sensors with high QE:
 - Near-IR for astronomy, Earth observation, hyperspectral imaging, high speed imaging, spectroscopy, microscopy and surveillance.
 - Soft X-ray (up to 10 keV) imaging at synchrotron light sources and free electron lasers requires substrate thickness >200 μm
- Low noise and high charge conversion factor are essential to most applications
 pinned photodiode is required

The Pinned Photodiode Pixel (PPD, 4T)

- PPD is the preferred CMOS imaging element now
- Charge is collected in a potential well and then transferred to the sense node
- Widely used, excellent performance
 - Noise could be <1 e-
 - Correlated double sampling comes naturally
 - Very low dark current
- However:
 - The peak voltage in the PPD (V_{pin}) is low ≈1.5V
 - Charge transfer is slow (tens or hundreds of ns),
 large pixels can have image lag
 - Reverse biasing is the only way to deplete thick material, but is problematic

Reverse biasing PPD pixels

- If reverse bias V_{reverse} is applied:
 - p+/p/p+ resistor is formed, leakage current flows
 - This has to be eliminated for a practical device
- Pinch-off under the p-wells is needed at all times (merged depletion regions) to prevent leakage
- The pinch-off condition depends on:
 - Doping and junction depth
 - Photodiode and p-well sizes
 - Bias voltages
 - Stored signal charge

Substrate current suppression

Simplified PPD pixel structure with DDE

- If the p-wells are deep (as they are usually), pinch-off may not occur
- The p-well should be made to be as narrow as possible, but this is not sufficient
- Additional n-type implant added:
 - Under the p-wells
 - Floating
 - Called Deep Depletion Extension (DDE)
- Patent pending (owned by e2v Technologies)

Substrate current

- Not a traditional reverse biased diode
- Different leakage mechanism
 - Thermionic emission of holes over a potential barrier
 - Not a breakdown
 - Eventually leakage occurs, however it should be well above full depletion

The test chip

- Made on 18 μ m 1 k Ω .cm epi, as a proof of principle
 - This reverse bias method applies to any thickness
- Based on a PPD provided by TowerJazz, modified by us
- Prototyping 10 μm and 5.4 μm pixel designs
 - 8 pixel arrays of 32 (V) \times 20 (H) pixels each
- Each array explores different shape and size of the DDE implant
 - One reference design without DDE (plain PPD pixel)

Whole sensor cross section

- Main difference with the typical PPD CIS all area outside the pixels is N-type implanted (N-well and deep N-well) and reverse biased
- All non-pixel circuitry is on top of deep N-well
- The exception is the backside bias region

Chip manufacture

- Submitted for manufacture in February 2016
- 18 front side illuminated (FSI) chips wire-bonded
 - 18 μm thick epi, 1 kOhm.cm
- Two wafers back-thinned at e2v
 - 10 backside illuminated (BSI) chips wire-bonded
 - 12 μm thickness after processing
- All chips worked without defects (100% yield)

FSI

BSI

Reverse biasing

- This shows the reverse current for the whole chip, including the logic and ESD pads
- All pixel variants work
- Reverse bias above -5V with no leakage means that any thickness can be depleted
 - V_{BSB} = -4V fully depletes 18 μm thick epi, 1 k Ω .cm
- Qualitative agreement with the simulations
 - The measurement is for all 8 variants in parallel, simulation is for one variant only

Performance under strong illumination and X-rays

- A concern for strong illumination:
 - PPD potential decreases
 - The pinch-off condition may break down
 - Rise of leakage current
- This was tested with pulsed light
 - No showstoppers
 - Large PPD capacitance and inherent anti-blooming help
- X-ray response is normal, noise ~8e- RMS

Proof of full depletion in FSI chips

- If there is no reverse current, the device should be depleted by design
- In front-side illuminated chips:
 - Bulk dark current should increase with the depletion depth
 - Once depletion depth = epi thickness the dark current should level off
 - Expected at V_{BSB} = -4V
- Data shows the expected behaviour, taken as evidence of full depletion

Tests of BSI devices

- Two wavelengths:
 - 470 nm (absorption length = $0.6 \mu m$)
 - 940 nm (absorption length = 54 μm)
- Expectations:
 - 470 nm should be very sensitive to the depletion depth, light fully absorbed near the bottom of the device, charge will diffuse more if not depleted
 - 940 nm should not be sensitive because the light is absorbed throughout the device depth.
- Pinhole in contact with the sensor, no optics
- The size of the imaged spot is used as an indication of the depth of depletion

BSI illumination tests

470 nm

Depletion edge

Depletion edge

940 nm

12 µm

- 470 nm (absorption length = 0.6 μm)
 - Spot should be very sensitive to the depletion depth
- 940 nm (absorption length = 54 μm)
 - Spot should be much less sensitive

Depletion edge

12 μm

Spot size vs reverse bias

- Standard deviation of the spot size in Y direction
 - 470 nm clear dependence on reverse bias, charge spread is reduced due to increasing depletion
 - 940 nm little sensitivity on reverse bias
- This is taken as a proof that the reverse bias works.
- The change of the charge spreading is not spectacular due to the epi being only 12 μm thick

Summary

- New fully depleted monolithic PPD CMOS sensor using reverse substrate bias demonstrated
 - First prototype designed on 18 μ m, 1 $k\Omega$.cm epi as a proof of principle
 - Can be scaled to much thicker epi/bulk substrates
 - Both FSI and BSI devices manufactured, full depletion proven
- Advantages for HEP:
 - Fully depleted, radiation hard, few electrons noise, large SNR, low power, large pixels can be made
- Disadvantages:
 - Charge transfer to sense node limits speed to few μs/row, very limited electronics per pixel, best suited for integrating detectors

