

The ILD detector concept

Ties Behnke

23.10.2017

The ILD Concept group

http://www.ilcild.org http://confluence.desy.de/ILD 71 groups have signed up,1 group pending approvalCurrently around 420 memberson the central mailing list.

Organisation of the group in place and working.

New: established central publication and speakers bureau, to organise talks and papers within ILD (Chair K. Kawagoe)

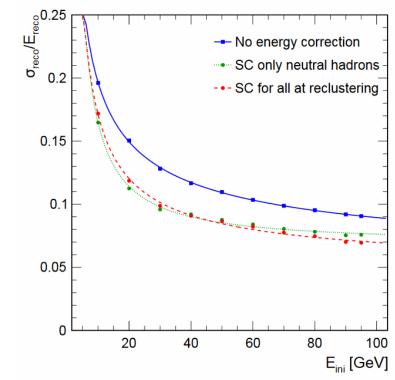
Some Highlights: Electroweak Physics with B tagging

dE/dx [GeV/mm] 1800 0.28F Generated Reconstructed 1600 0.26 Corrected Goal: measure the Z return background 1400 0.24 cc background ZZ ZH WW background b-electroweak coupling 1200 0.22 to the Z at 250 GeV 1000 0.2 800 0.18 (3 σ deviation between LEP 0.16 600 0.14 400 and SLAC measurements) 0.12 200 0. 0.8 10^{-1} 10 p [GeV] cosθ

Challenge: Determine the charge of the B vertex.

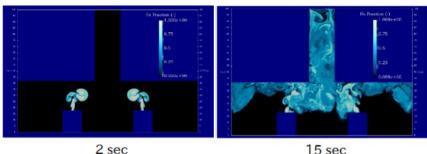
Vertex charge measurements improved by dEdx: Kaon ID

97% purity with 87% purity > 3 GeV


arXiv:1709.04289

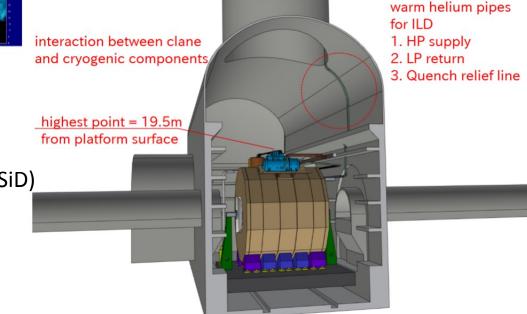
Some Highlights: Calorimeter Performance

Much improved understanding of the performance and calibration


- System to correct in software for e/h ratio (software compensation) significantly improves resolution (CALICE work)
- Extensive work to validate ECAL and HCAL software
- Solid basis for optimization of ILD based on tested performance

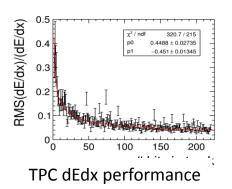
Single particle resolution with and without SW compensation (from arXiV 1705.10363 4

Some Highlights: Integrating ILD

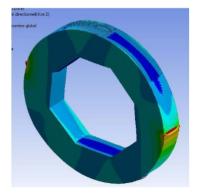


Simulation of cryo loss in the experimental hall Okamura etal., at recent CFS/ MDI meeting at KEK Curent design meets safety requirements

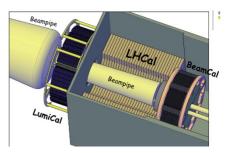
Studies are continuing how to integrate ILD into the Kitakami site (together with SiD)


- Series of workshops
- Detailed study of ILD in the hall

Some Highlights: R&D



Continue to have a very active R&D program connected to ILD, but performed by the different R&D groups.



Calo test beam (ECAL, HCAL) at DESY and CERN

Stability+vibration studies

Forward region re-design

VTX technologies (here FPCCD)

The ILD concept

+ much more, see parallel sessions

ILD since 2013

Re-optimize ILD for optimal performance and cost/ performance ratio

Prepare the group to quickly move to a real collaboration once the start is given.

Provide a basis for realistic physics studies to make and improve the science case for the ILC. Most recently, strong push to make 250 GeV case

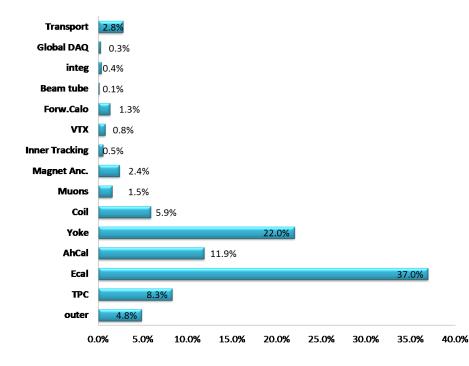
2013	Start small scale optimziation studies	Oshu meeting: Start reorganisation	Decide to move to new software	First systematic model comparisons	two models defined	New software operational	First test production	2019
TDR/ DBD		2014		2015 The ILD	^{con} 2016		2017	report 7

Our Goal

- 1. Define a performance/ cost optimized ILD detector
- 2. Demonstrate the performance of the ILD concept
- 3. Provide a basis (event sample) for future physics studies of fully simulated and as realistic as possible events.
- 4. Document the
 - 1. Design
 - 2. Engineering
 - 3. Performance
 - of the ILD detector model

The Deliverable

Document the work in a comprehensive ILD document


- ILD philosophy and thinking
- ILD overall design
- ILD subdetector choices and options
- ILD engineering design
- ILD integration with ILC and into the Kitakami site
- ILD performance
- ILD physics performance

ILD	
Report (tbd)	

Anticipated early₉2019

Detector Costs

- Costing study done for DBD
- Essentially no updates since then
- Cost drivers:
 - Calorimeters
 - Yoke
- Serious re-study of costs and update still has to start

Optimization steps

Single particle Studies

- Response studies focussed on one sub-detector
- "easy", low resource needs, fast

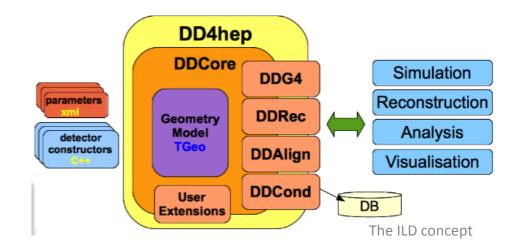
High Level performance studies

- Tracking, vertexing, particle flow
- Based on dedicated, maybe even unphysical samples
- Based on multiple subdetectors

Physics Performance

- Selected physics channels to study performance for key measurements
- Need full samples, including backgrounds

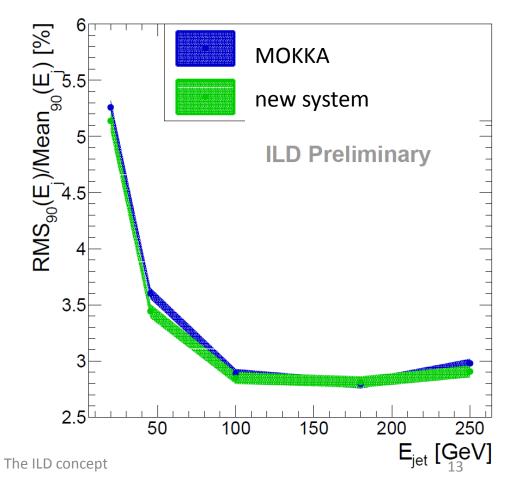
demands on samples ncreasing complexity ncreasing


New Software

Decided to move to new, open source, common framework:

- DD4HEP
- DDSIM LCIO based
- DDREC

Comonly developed with CERN, SLAC, others In part used by SiD, CLICdp, FCC, others

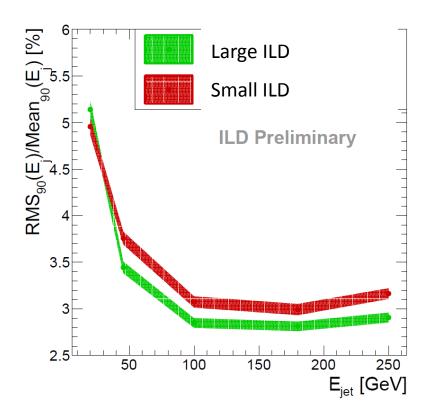

Simulation with relevant details (example: inefficiencies in calo)

Validating new Software

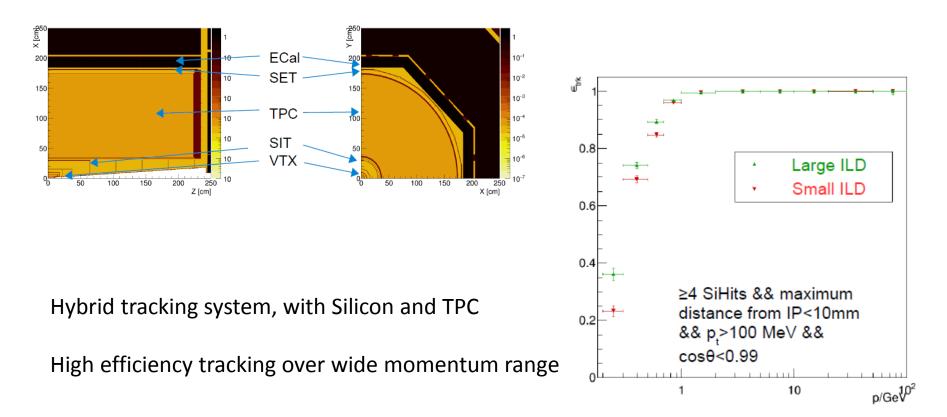
Major step:

Validate the complete new chain

- DBD detector model
- Same generator files
- Full reconstruction
- Compare particle flow performance



Optimization: Particle Flow



Detector	ILD-L (DBD)	ILD-S
B Field	3.5 T	4 T
VTX inner radius	1.6 cm	1.6 cm
TPC inner radius	33 cm	33 cm
TPC outer radius	 153 cm	140 cm
TPC length (z/2)	235 cm	235 cm
Inner ECAL radius	184 cm	150 cm
Outer ECAL radius	202.5 cm	168.5 cm
Inner HCAL radius	206 cm	172 cm
Outer HCAL radius	335 cm	301 cm
Coil inner radius	344 cm	310 cm

Optimization: Tracking

Our Work Plan

- Full scale production of "complete" sample will start soon
 - Test samples have already been produced
- Analyses for ILD-S and ILD-L will follow
 - Analyses are being prepared, benchmark reactions have been defined
- Prepare for input to the European Strategy end 2018
- Finalise the ILD Design Report by early 2019

Conclusion

- ILD continues has an active program
- Strong participation in making the case for the 250 GeV ILC
- Re-optimization of detector is well under way
- Complete change of software system sucessfully done
- Plan to write a comprehensive ILD document towards the end of 2018/ early 2019