Dynamic Effects During Tuning in the CLIC FFS at 3 TeV

Edu Marin¹ emarinla@cern.ch

¹CERN, Geneva, Switzerland

October 26th, 2017 BDS & MDI Session **LCWS 2017, Strasbourg (France)**

Acknowledgements: J. Pfingstner

Outline

- **1** Square One
- 2 Ground Motion Model
- Tuning
 - Algorithm
 - Results
- Issues
- **5** Luminosity Signals
- **6** Conclusions

Square One

- 2-Beam Tuning results including static imperfections
 - Transverse & rotation alignment errors
 - BPM reading errors
 - Strength errors

90 % machines reach 97 % of \mathcal{L}_0 after 15000 \mathcal{L} measurement CLIC target: 110 %

GROUND MOTION

Simulation Model

- Ground Motion Model D (B10)
- Stabilization Filter type
 - v2
 - v3
- Pre-isolator:
 - 1: simple version F. Ramos et al.
 - 2: mechanical feedback B. Caron et al.
 - 3: F. Ramos et al. including tilt motion
- Perfect intra-train IP feedback

Not included into simulations:

Orbit feed-back

Stabilization Model

Impact of only Ground Motion (GM)

TUNING STUDY

Square One

Tuning Algorithm

- Motion of beamlines w.r.t IP
- Considered Interval times (Δt) [s] (steps of 0.02 s):
 - 0.02 (50 Hz)
 - 0.2 (5 Hz)
 - 0.8 (1.25 Hz) *
- \mathcal{L} only evaluated at every Δt
- Considered stabilization versions: v2 and v3
- Ground motion acts on both beamlines through the entire tuning procedure
- Procedure based on previous studies: $(BBA \Rightarrow Linear \Rightarrow Non-linear Knobs)$

^{*}required for luminosity measurement error < 1%

Tuning Results I

- Stabilization Filter v2
- Considered interval times (Δt):
 - From Scan 1st to 25th: 0.2 s (5 Hz)
 - From Scan 26st to 33rd: 0.02 s (5 Hz)

Results

Tuning Results II

- Stabilization Filter v2
- Interval times (Δt) [s]: 0.02 (50 Hz), 0.2 (5 Hz)

Run-9

Run-16

Results

Tuning Results III

- Stabilization Filter v3
- Interval time (Δt) [s]: 0.8 (1.25 Hz)

Run-2

Results

Tuning Results IV

- Stabilization Filter v3
- Interval time (Δt) [s]: 0.8 (1.25 Hz)

ISSUES

Ground Motion

Average luminosities during typical linear knob scans (250 measurements)

IP Feed-Back

Relative offset at the IP

IP orbit feedback range † in Y-plane is 10 σ_y^*

[†]J Resta-López et al 2010 JINST 5 P09007

Computation Time

- Luminosity computed every 0.8 s
 - Should be computed every 0.02 s \Rightarrow "average" every 0.8 s
- Bunch Population is linked to \mathcal{L} precision
 - 10^5 particles required when $\mathcal{L} \geq 0.8\mathcal{L}_0$

- Orbit Feed-back not included
 - If included it will significantly increase computational time

LUMINOSITY SIGNALS

Signals generated by Guinea-Pig through collision of 10⁶ particles per beam

- Luminosity
- Number of Photons (beam1)
- Number of Photons (beam2)
- Number of Coherent
- Number of Pairs
- Number of Hadrons

X - Linear Knobs (Mapclass)

Y - Linear Knobs (Mapclass)

X - Linear Knobs (Octave)

Y - Linear Knobs (Octave)

Dispersion-Free-Steering Knobs - Octave

Normal Sextupoles - Non-Linear Knobs - Mapclass

Skew Sextupoles - Non-Linear Knobs - Mapclass

CONCLUSIONS

Summary

Conclusions

- Semi-realistic tuning has been implemented
 - Single £ calculation every 0.8 s
 - Ideal IP intra-train feedback
- Realistic tuning is time costly
- # of pairs and Hadrons seems to be alternative useful signals
- Dynamic imperfections seem to impact machine performance by more than 10%

Outlook

- Include orbit feed-back into simulations
- Determine required interval time when using pairs or hadrons signals
- Speed-up calculation by justified assumptions