Demonstrating Linear Collider Final Focus Systems in SuperKEKB

P. Thrane ^{1,2} Y. Funakoshi ³ Y. Ohnishi ³ K. Oide ³ H. Sugimoto ³ R. Tomás ¹ D. Zhou ³

¹CERN, Geneva

²Norwegian University of Science and Technology, Trondheim

3KEK, Tsukuba

LCWS 2017, Strasbourg

Outline

- Motivation for testing future LC FFS in SuperKEKB.
- ▶ Results from initial low β_y^* simulations in SuperKEKB LER.

FFTB and the traditional CCS

- Two separate high dispersive regions, each with two sextupoles, correct horizontal and vertical chromaticity respectively.
- Advantage: easier to tune.
- ► Tested in the FFTB, where a vertical beam size $\sigma_y^* = 70 \pm 7$ nm was achieved¹.

¹A. Alexandrof et al. "Results of Final Focus Test Beam", IEEE, 4, pp.2742-2746 (1996).

ATF2 and the compact CCS

- Sextupoles for chromaticity correction are interleaved with the FD.
- Shorter FFS.
- Still unsolved discrepancy between experiment and simulations.

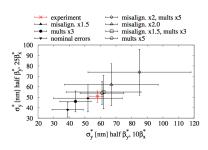


FIG. 11. The IP beam sizes measured in ATF2 (red) and obtained with simulations without the orbit correction (black) for half β_x^* , $10\beta_x^*$ and half β_y^* , $25\beta_x^*$ optics.

M. Patecki et al. "Probing Half β_y^* Optics in the Accelerator Test Facility 2", 10.1103/PhysRevAccelBeams.19.101001 (2016).

FFS chromaticity comparison

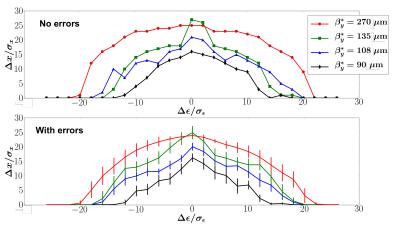
	$L^*[m]$	$\beta_y^*[\mu\mathrm{m}]$	$\xi_{ extsf{y}} \sim (\mathrm{L}^*/eta_{ extsf{y}}^*)$
CLIC	3.5	70	50 000
ILC	3.5 /4.5	480	7300 /9400
ATF2	1	100	10 000
FFTB	0.4	100	4 000
SuperKEKB LER	0.935	270	3 460
SuperKEKB HER	1.41	410	3 440

- Nominal SuperKEKB will demonstrate chromaticity correction on same scale as FFTB.
- ▶ A factor 3 reduction of β_y^* in SuperKEKB would be on scale with ATF2 and ILC, but with the traditional CCS.

Chromaticity correction optics

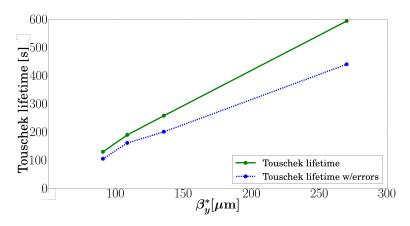
Comparison of FFS optics in SuperKEKB LER and in CLIC with the traditional CCS.

Increasing chromaticity in LER

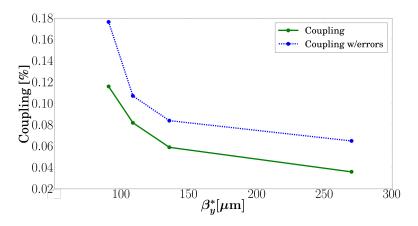

- ▶ SuperKEKB LER lattice matched to reduced β_y^* by a factor 2, 2.5 and 3 using SAD².
- Dynamic aperture and Touschek lifetime optimized by varying sextupole strengths.

Effect of machine errors

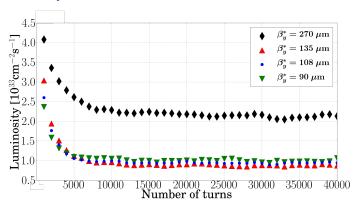
- Only correction for tune and coupling.
- No errors added in the IR.


	$\sigma_{\theta}[\mu \mathrm{rad}]$	$\Delta K/K$
Quadrupoles	100	2.5×10^{-4}
Sextupoles	100	2.5×10^{-4}

Dynamic aperture


- Dynamic aperture reduction calculated for 110 machines with different lattice errors.
- ► Single particle tracking for 1000 turns, no beam-beam effect.

Touschek lifetime in LER


- Touschek lifetime estimated using nominal values for emittance and intensity.
- ▶ Errors have less effect on lifetime for lower β_y^* due to larger coupling (next slide).

Coupling

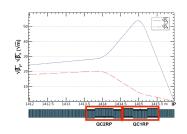
- ▶ Remaining emittance coupling ϵ_y/ϵ_x after correction.
- Not including beam-beam interaction. Coupling value for the nominal machine with the beam-beam effect is 0.27%.

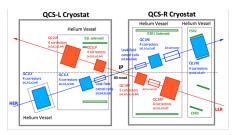
Measuring β_{ν}^* using luminosity measurements

- Luminosity estimated using a beam-beam tracking routine in SAD.
- ► LER intensity reduced by 72% to correspond to single turn injection.
- Important limitation is background in fragile Belle II detector as well as lifetime requirement.

Exploring possibility of using k-modulation

- ▶ Using k-modulation to measure β_y^* directly reduces needed intensity, and only needs beam in LER.
- Possibility looked at using a method developed for the LHC, but large fringe fields in the IR require a different approach.


Conclusions


- ▶ Preliminary results show a reduction of β_y^* by a factor 3 might be possible in LER, testing the traditional CCS at levels comparable to ATF2 and ILC.
- Further work is needed to determine if k-modulation can be used to measure β_{ν}^{*} .

SuperKEKB Machine Parameters

	LER (e^+)	HER (e^-)	Unit
E	4.000	7.007	[GeV]
I	3.6	2.6	[A]
Number of bunches	2 5		
Bunch current	1.44	1.04	[mA]
Circumference	3 016.315		[m]
ϵ_x/ϵ_y	3.2/8.64	4.6/12.9	$[\mathrm{nm/pm}]$
Coupling	0.27	0.28	[%]
β_x^*/β_y^*	32/0.27	25/0.30	[mm]
Crossing angle	83		[mrad]
α_p	3.18×10^{-4}	4.53×10^{-4}	
σ_{δ}	8.10×10^{-4}	6.37×10^{-4}	
V_c	9.4	15.0	[MV]
σ_z	6.0	5.0	[mm]
$ u_s$	-0.0244	-0.0280	
$ u_x/ u_y$	44.53/46.57	45.53/43.57	
U_0	1.86	2.43	[MeV]
$ au_{x,y}/ au_z$	43.2/21.6	58.0/29.0	[msec]
ξ_x/ξ_y	0.0028/0.0881	0.0012/0.807	
Luminosity	8 × 1	10^{35}	$[{\rm cm}^{-2}{\rm s}^{-1}]$

IR in SAD lattice

Y. Funakoshi, Overview of SuperKEKB. Presentation at KEK Nov. 2013.

- ► IR model consists of 10 mm slices containing magnetic multipole fields for all IR elements.
- Quadrupole field component of focusing magnets are varied while higher order multipole fields are kept constant.