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Why do we care about oriented ES?

• Allows for so far unexplored tests of QCD.

• Can have a large impact in the measurement of              .

• Can have an impact in measurements of             .

• Additional handle in top quark mass measurements.

• Can help improving quality of Monte Carlo generators.

• Nice simplified laboratory to study power-suppressed factorization theorems 

and resummation.

• Could be the first case of subleading power corrections for a massive Event 

shape in SCET/bHQET.

sin(✓W )

↵s(mZ)

• Data measurements from ALEPH and DELPHI exist, but no analysis of them 

with high-precision theoretical predictions exist yet.
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Next steps: introduce SCET currents into QCD computation
                  perform x integration
                  require label momentum conservation
                  Use fierz identities
                  Perform analytically the sum over perp momenta labels  
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LO factorization theorem in SCET
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These matrix elements are known at 2 or 3 loops
Anomalous dimensions known to 3-loops
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This angular decomposition remains true to all orders, massive or massless 
particles, partons or hadrons

[VM, Rodrigo (2013)]
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Next one has to project into the desired event shape
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An all-order proof



Key ingredients of the proof
Most general Lorentz decomposition of Hadronic Tensor

Phase space factorization

Thrust remains invariant if particles clustered within the same hemisphere

Terms linear in cos     or sin     vanish upon average over the polar angle✓T ✓T

beam pipe
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so
ft 

radiatio
n

collinear radiation

If parity violation is taken into account and one can distinguish between the two 
hemispheres, then also cos     terms can appear✓T
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NLO result at 
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NLO results
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NLO averaged total cross section
The total angular hadronic cross section has to be computed by 
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NLO averaged total cross section
Nice agreement among the various ES extrapolations for each color 
structure. 

Disagreement with previous determination by [B. Lampe (1992)], who 
performs a linear extrapolation in the resolution parameter.
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Figure 10. Comparison of our theoretical predictions (red line) with DELPHI data (blue dots) for
thrust. Our theoretical prediction contains resummation of singular logs at N3LL and fixed-order
matrix elements at O(↵3

s) and O(↵2
s) for the total and angular distributions, respectively. No power

corrections have been included, which could explain the slight disagreement with data. We use the
world average value for ↵s(mZ). We compare to the two bins in cos ✓T for which the difference
between the averaged and oriented distributions is maximal. In panel (a) the oriented distribution
is higher than the averaged, whereas in panel (b) the opposite occurs.

Rang
2 and we find very good agreement in each color structure, as can be seen in Fig. 9.

Defining

Rang
2 = C2

F

Rang
CF

+ C
F

C
A

Rang
CA

+ C
F

T
F

n
f

Rang
nf

, (5.5)

we find

Rang
2 = 0.831 ± 0.014 ± 0.006 , (5.6)

Rang
CF

= 0.162 ± 0.008 ± 0.002 ,

Rang
CA

= 0.256 ± 0.029 ± 0.001 ,

Rang
nf

=� 0.1443 ± 0.0008 ± 0.0006 ,

where the first uncertainty is statistic and the second one is systematic. Our results do not
agree with those computed in Ref. [19]. We find a much bigger correction than they do,
and additionally we find an opposite sign for Rang

CF
. We will make additional checks of our

determination in future work.
In Fig. 10 we compare our theoretical predictions with DELPHI data. We compare

the differential thrust distribution for two bins in cos ✓
T

. We choose these two bins since
they have the largest deviation from the averaged cross section in the positive and negative
directions. Our theoretical prediction is purely perturbative, and includes resummation of
singular logs at N3LL and fixed-order matrix elements up to three loops.
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We have a few cross checks on our estimate:
Our result is independent of event shape
Our LO Event-2 cross sections agree with analytic computation
Our NLO Event-2 cross sections agree with sub-leading factorization theorem 
at small e
Same technique and Event2 runs have been used to determine other constants

Further checks are possible and will be performed in the near future

Rang
2 |Lampe = �0.044± 0.012
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Sub-leading power factorization theorem
[Hagiwara, Kirilin (2010)]
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where ξni
and A⊥ni

are fields from different SCET copies in the light-cone gauges of the

type of Eq.(3.13) with the light-like vector ni. In order to introduce the gauge invariant

operators, one should replace the fields entering the operators (4.10) to ξ′ and A′
⊥ in an

arbitrary gauge, using the following relations:

ξ = YW †ξ′, gsAc⊥ = Y
(
W †iD′

c⊥W − i∂⊥
)
Y †,

D′
c⊥ = ∂⊥ − igA′

c⊥

(4.11)

where fields without primes are in the corresponding light-cone gauge. Including a soft

Wilson line Y in the definitions (4.11) allows one to decouple soft and collinear degrees

of freedom in the leading order SCET Lagrangian [18, 17]. Using the expressions (4.11)

yields the following operators

O3 = 2gsξ̄
′
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Ã/⊥,n+
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†
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′
n + 2gsξ̄
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YnWnÃ/⊥,nξ
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n, (4.12)

where
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= A′
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−
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[
∂⊥,W

†
ni

]
. (4.13)

The operator (4.12) is in fact the operator O3 derived in Ref.[19] taken in the limit: nq →
n+, nq̄ → n and ng → n or ng → n+. Integration over hard modes gives the matching

coefficient CH of the QCD operator Ĵ∥ (3.10) onto the SCET operator O3 (4.12)

Ĵ∥ → CH
(
Q2, µ2

)
O3. (4.14)

The important point about the operator (4.12) is that it is a local product of the

r-, l-collinear and soft SCET operators. According to Ref.[14], this feature is the only

requirement to establish a factorization formula for an angularity distribution. For the

operator (4.12), the thrust distribution takes the form:

G (τ) = 2H3
(
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) ∫
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where ST
(
k, µ2

)
is the same soft factor as defined in (4.7), J

(
p2L, µ

2
)
is the jet function

defined in (4.6), and H3 = |CH |2. The new object in the formula (4.15) is Σ⊥
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which can be considered as the imaginary part of the quark “transverse” self energy pro-

jected onto n/. In contrast to the jet function or the soft factor, whose leading expressions

are δ-functions, the tree level expression for Σ⊥
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is a smooth function:
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with

g (L,αs) =
2Γ0

β0
[ln (1− 2λ)− ln (1− λ)] , λ =

β0αs

4π
ln

1

τ
. (5.20)

Here the pre-exponential factor 1 + αs
(
Q2
)
(C3 − C2) has also been exponentiated to the

NLL level of accuracy. Since the soft factor in Eq.(4.15) is the same as the one in Eq.(4.5),

it drops out of the ratio (5.17) almost completely. The resummation factor exp [ω(τ)] is

shown in Fig. 5.

Since the function G(τ) gives the shape of
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Figure 5: Resummation factor as a func-
tion of the thrust boundary τ > 1− T .

the jets which have distinct angular distribution

∼ sin2 θT , which is different from that of F (τ),

there is a possibility to measure G(τ). Such analy-

sis was performed by the OPAL collaboration [25].

The comparison of theoretical predictions with the

OPAL data is presented in Fig. 6, where three curves

are shown. The thin solid line corresponds to the

perturbative result (2.14). As one can see from

Eq.(3.15), dG(0)/dτ tends to constant in the τ → 0

limit. The distribution improved by resummation

(5.12) is drawn by the dashed line. The solid line present the prediction with nonpertur-

bative effects as discussed below in Sect. 6.

Since the result (5.12) is valid in the region τ ≪ 1, we match the resummation factors

with the perturbative result (2.14) so that all higher order corrections disappear when τ

tends to its maximal value for a three-jet configuration τmax = 1/3. The lack of multiplicity

for the perturbative result (2.14) explains why the data exceeds the prediction in the region

τ ! 1/3, while the poor accuracy of the data in the region τ ≪ 1 does not allow one to
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Figure 6: Comparison of the OPAL data for the longitudinal thrust event shape with the theoretical
predictions dG/dτ at τ = 1−T . The bars with short strokes represent systematic errors and those
with long strokes are statistical errors. The thin solid curve shows O (αs) perturbative result, the
dashed curve gives the LL+NLL prediction, while the solid curve is obtained after convoluting with
the non-perturbative shape function discussed in section 6.
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Effects of 
resummation 
appear to be 
important

This formula 
reproduces LO 
and NLO results 
in the dijet limit

OPAL data

[Hagiwara, Kirilin (2010)]

Sub-leading power factorization theorem



Outlook



Outlook
Generalize the proof to massive Event shapes both in SCET and bHQET

Compute the LO Fixed-oder and SCET distributions with heavy quarks

Compute the missing anomalous dimension to achieve N2LL precision

Further clarify the disagreement with Lampe

Create a fast computer code that matches the resummed expression with 
fixed-order results, and includes power corrections in a renormalon-free 
scheme

Compare to data and fit for ↵s

Include massive oriented event shapes in the MC mass calibration program.

Manpower is most welcome for most of these tasks!

Extract the three-loop fixed-order angular term from EERAD3 (possible?)
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