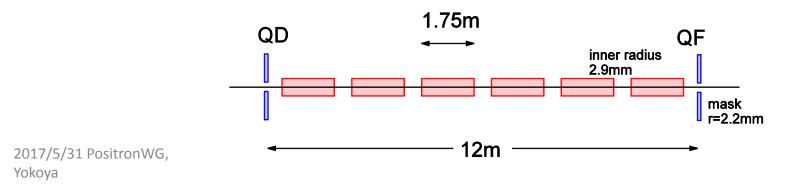
Power Distribution on Masks in Undulator Section

K.Yokoya 2017.6.1 Positron WG

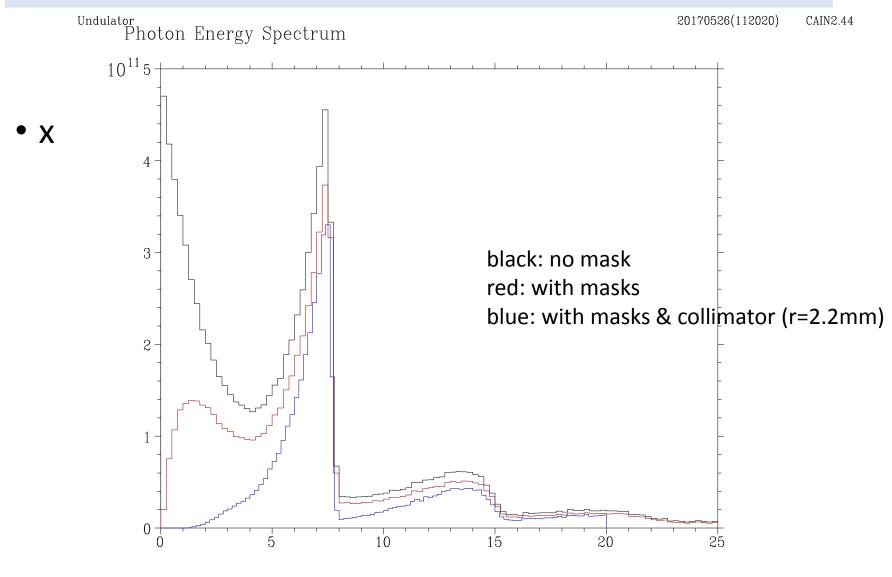

2017/5/31 PositronWG, Yokoya

Motivation

- How high is the power deposited at the masks in the undulator section?
 - Needed to see if the mask can be designed
- How high is the power deposited on the inner surface of the undulators?
- If further collimator is needed just in front of the target, how high is the deposit there as a function of the radius. (not actually done here)

Assumptions

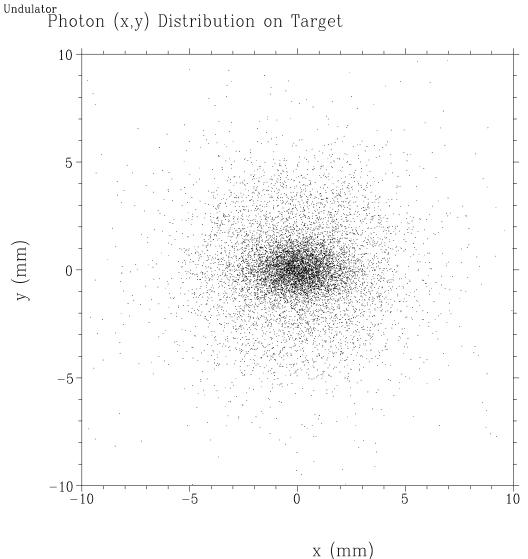
- 1312 bunches, 5Hz
- E_e = 128→125GeV
- Undulator L=1.75m, n=132 (n*L=231m), K=0.85
- Optics
 - FODO
 - Distance between QF-QD (thin lens) = 12m
 - Phase advance = 90deg
 - 6 undulators between QF and QD
 - Distance between undulator section center to target = 401.1m (compact dogleg by Okugi san)
- Mask at every quad. r=2.2mm (TDR)
- In some cases, collimator (r=2.2mm or larger) just in front of target
- Normalized emittance $\varepsilon_x = 8\mu m$, $\varepsilon_y = 40nm$
- No alignment errors



Photons on the Target

	No Mask	With Masks	Masks & Coll.
nγ / bunch	9.59x10 ¹²	8.01x10 ¹²	4.60x10 ¹²
Average photon energy (MeV)	6.28	7.30	9.68
Power on target (kW)	63.4	61.5	46.7

- Total Photon Power
 - On masks 1.88 kW
- Average Electron Energy Loss 3.01GeV


Photon Energy Distribution on Target

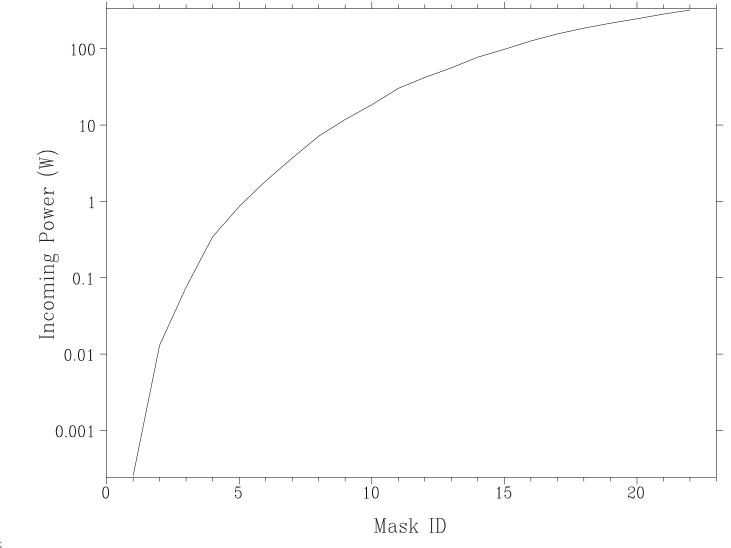
2017/5/31 PositronWG, Yokoya

Photon (x-y) Distribution on Target

- With masks
- See slightly larger horizontal size due to horizontal emittance
- Only randomly selected particles are plotted here
- Total number of macro particles is ~400k

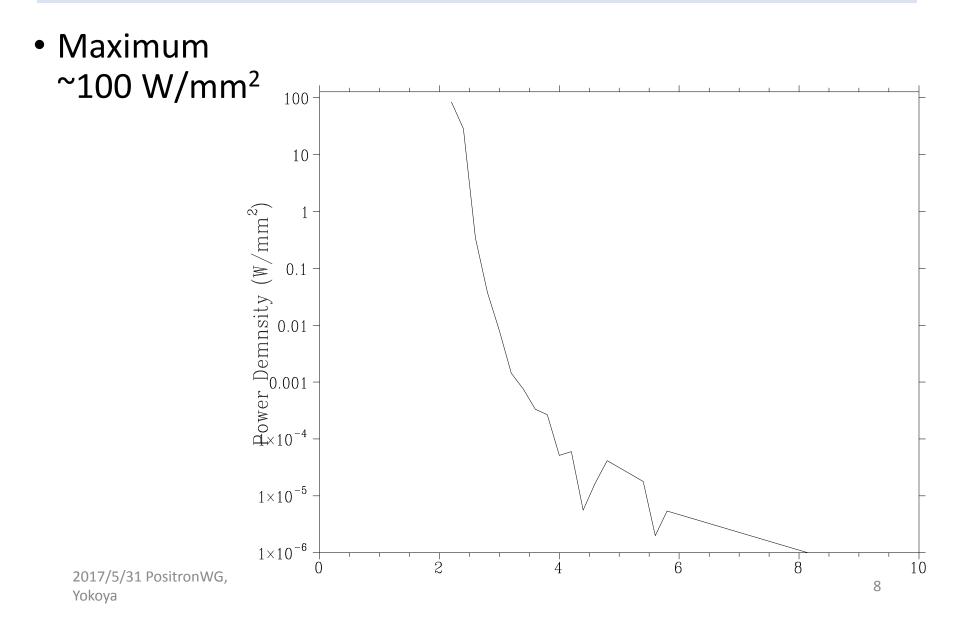
points inside points outside

2017/5/31 PositronWG, Yokoya


9853

63

20170526(112020)


Power Distribution on Masks

 Maximum is at the last mask
~ 320 W

2017/5/31 PositronWG, Yokoya

Radial Power Distribution on the Last Mask

Photons Lost in Undulators

- Select photons lost at the last mask
- They might have been lost in undulators
 - Distance between masks is 12m
- Find distribution of lost position
 - r_{mask} = 2.2mm, r_{undulator} = 2.9mm
- Plot the power distribution

	macro particle	n/bunch	<e> (MeV)</e>	power
Photons lost in the whole undulator section	79459	158. x10 ¹⁰	1.13	1884 W
Photons lost at the last mask	8266	16.5 x10 ¹⁰	1.85	320 W
Photons lost between the last 2 masks	106	0.21 x10 ¹⁰	0.020	0.044 W

Longitudinal Distribution of Photon Power Hitting the Undulator

Maximum < 50 mW undulator Average photon energy ~20keV 0.015 • Statistics is a bit Power (W/m) only ~100 particles 0.005 0 Ż 10 12Ó 6 8 L(m)

Radiation Power inside Undulator

2017/5/31 PositronWG, Yokoya

in one

poor

Photon Data

- Photon data are stored in
 - <u>http://lcdev.kek.jp/~yokoya/temp/BeamOnTarget2017-0526.txt</u> (survived photons on the target. no collimator. Contains some 400k photons)
 - <u>http://lcdev.kek.jp/~yokoya/temp/LostPhotons2017-0531.txt</u> (lost photons. Lost position preserved, Contains some 80k photons)
- Format
 - 1st line: title
 - Then I2, 11X, 12E20.12
 - I2: 1 for photon, 2 for electron
 - 12E20: w, t, x, y, s, E, p_x , p_y , p_s , ξ_1 , ξ_2 , ξ_3 ,
 - w: 1 macro-particle represents w real particles
 - ξ: Stokes parameters