Integrated Luminosities [fb]

Update from the Physics & Parameter Groups

J. List, June 9 2017 ILC @ DESY General Project Meeting

Part - I Update from the LCC Physics WG

Recent Activities in the LCC Physics WG

- "The Potential of the ILC for Discovering New Particles"
 => arXiv:1702.05333
- since then: staging, staging, staging:
 - focus on 250 GeV physics case
 - paradigm shift in Higgs coupling measurement interpretation => effective field theory! (c.f. Christophe's talk last meeting)
 - paper in preparation on "Improved Formalism for Precision Higgs Coupling Fits"
 - using Higgs and electroweak measurements

NEW: role of polarisation for Higgs measurements

 some EFT parameters cannot be constrained from unpolarised total cross sections (c.f. Christophe's talk)

need either: polarised cross sections or angular distributions and high

+ 500 GeV

luminosity

m reerry				
	$2 \text{ ab}^{-1} \text{ w. pol.}$	$5~{ m ab}^{-1}$ no pol.	$20~{\rm ab^{-1}}$ no pol.	full ILC EFT fit
$g(hb\overline{b})$	1.5	1.1	0.8	0.6
$g(hc\overline{c})$	2.1	1.6	1.0	1.1
g(hgg)	1.9	1.5	0.9	0.9
g(hWW)	1.0	0.9	0.7	0.31
g(h au au)	1.6	1.2	0.8	0.8
g(hZZ)	1.0	0.9	0.7	0.31
$g(h\mu\mu)$	14	9.0	1.5	8.6
g(hbb)/g(hWW)	1.1	0.8	0.4	0.5
g(hWW)/g(hZZ)	0.34	0.38	0.04	0.02
Γ_h	3.1	2.5	1.7	1.5
$\sigma(e^+e^- \to Zh)$	0.70	0.51	0.27	0.56
$BR(h \to inv)$	0.3	0.3	0.2	0.3
$BR(h \rightarrow other)$	1.6	1.2	0.6	1.1

NEW: confronting BSM models with ILC precisions

define global chi^2 based on all fit parameters g:

$$(\chi^2) = g^T [VCV^T]^{-1} g$$

test two model hypotheses A & B against each other:

$$(\chi^2)_{AB} = (g_A^T - g_B^T) [VCV^T]^{-1} (g_A - g_B)$$

- A,B: either SM or various BSM models
- obtain "matrix" of discrimination power

Preliminary list of models:

- BSM1: pMSSM with m (sbottom, gluino) = 3-4 TeV,
 Higgsino LSP at 515 GeV
- BSM2-6: 2HDM type I, II, X, Y
 with heavy Higgses at 150 600 GeV
- BSM7,8: Little Higgs with T-parity
 with f~1TeV, top partners at ~2 TeV
- BSM 9: Extra Dimensions with Higgs-Radion mixing, m_radion = 500 GeV, others multi-TeV
- BSM 10: Electroweak baryogenesis model with additional Higgs-singlet, m ~ 3TeV
- in prep: Higgs compositeness

Discrimination power of ILC250, 2ab-1

Discrimination power of ILC250, 2ab-1

Discrimination power of ILC250, 2ab-1

Discrimination power of ILC250, 2ab-1 + ILC500 4ab-1 (~H-20)

Discrimination power of ILC250, 2ab-1 + ILC500 4ab-1 (~H-20)

Part - II Update from the Parameter Group - UNOFFICIAL-

Preparation of Staging Discussion at AWLC

Wed 28/06

Shinichiro Michizono: Staged design plan for the ILC Junping Tian: Luminosity and energy evolution for the staged ILC Philip Burrows: Staged design plan for CLIC Panel discussion of ILC staging options

Staged Main Linac Configurations (S.Michizono)

Option C: "no empty tunnel"

Option C: 125GeV e 125GeV e-

more luminosity:

- no 10 Hz operation (would need to install power in the "wrong" places for 500 GeV!)
- TDR => RDR: more power, 2nd damping ring => ~ 1.5 years
 more energy:
- tunnel construction and installation of cryomodules during physics operation, only "short" break for connecting new & old parts => ~1 year
- need to build new turn-around (~1 km of beamline!)
 => intermediate steps (eg 350 GeV) highly discouraged

Option D: "simple tunnel"

more luminosity:

- no 10 Hz operation (would need to install power in the "wrong" places for 500 GeV!)
- TDR => RDR: more power, 2nd damping ring => ~ 1.5 years more energy:
- simple tunnel exists => energy upgrade a bit cheaper than in C
- tunnel preparation and installation of cryomodules during physics operation, only "short" break for connecting new & old parts => ~1 year
- need to build new turn-around (~1 km of beamline!)
 => intermediate "physical" 350 GeV step highly discouraged

Option C "no empty tunnel" vs D: "simple tunnel"

- big difference in credibility of energy upgrade!
- but hardly any difference wrt the running scenario, in both cases the candidate is:

Option C "no empty tunnel" vs D: "simple tunnel"

- big difference in credibility of energy upgrade!
- but hardly any difference wrt the running scenario, in both cases the candidate is:

Option E: "high-E transport"

Option E: 350GeV Option E':

more luminosity:

- no 10 Hz operation (would need to install power in the "wrong" places for 500 GeV!)
- TDR => RDR (more power, 2nd damping ring) => ~ 1.5 years
 more energy:
- a real promise!
- installation of cryomodules => ~1 year
- no need to build new turn-around => intermediate steps "easy"

- even much stronger credibility of energy upgrade!
- could keep previous scenario or go for higher energies first:

Integrated Luminosities [fb]

even much stronger credibility of energy upgrade!

even much stronger credibility of energy upgrade!

even much stronger credibility of energy upgrade!

Option F: "sparse linac"

more luminosity:

- 10 Hz operation possible (by installation of power plants needed for 500 GeV anyhow)
 - => lumi x2 without significant shutdown
- TDR => RDR (more power, 2nd damping ring) => ~ 1.5 years
 more energy:
- a real promise!
- installation of cryomodules => ~1 year
- no need to move turn around => intermediate steps "easy"

Option F "sparse linac" vs E

- 10 Hz offers option to go to higher luminosity first
- · e.g. if energy upgrade not yet financed
- · most flexible scheme

Integrated Luminosities [fb]

Option F "sparse linac" vs E

- 10 Hz offers option to go to higher luminosity first
- · e.g. if energy upgrade not yet financed

Conclusions

- LCC Physics WG
 - very active in making the 250 GeV physics case
 - new way to illustrate BSM capabilities of Higgs/EW program
- Parameter WG
 - preparing for major staging discussion at SLAC, to converge on one prefered staging option
 - developing running scenarios for each of the proposed staging options ("primed" version to come...)