Status of Detector Solenoid and Anti-DID 2017/9/28

Yasuhiro Makida, Takahiro Okamura

- Design study about ILD solenoid including Anti-DID has been carried out with the cooperation of Hitach and Toshiba.
- Recently, Anti-DID design and stress analysis is in progress.
- Hitach is analyzing stresses in the Anti-DID, which has same dimensions and parameters described in TDR.
- Toshiba is analyzing stessed in the Anti-DID, which has smaller and simpler dimensions, because of realistic transportation.

Hitachi Study

• Same dimension in TDR

Turn #	412 turn/coil X 3 coil = 1236 turn
Solenoid Current	22.4 kA
B-H curve	From TDR
Iron dimension	From 3D CAD data

Tab 4: ILD anti-DID main parameters (version 1)

Design dipole central field on	0.035	Nominal current (A)	615
beam axis (T)			
Position of max dipole field in z	3	Overall current density	40
(m)		(A/mm ²)	
Maximum field on conductor (T)	2.0	Total ampere-turns anti-DID	656 x 2
		(kA.t)	
Anti DiD inner radius (mm)	4190	Stored energy (MJ)	4.4
Anti DiD total length in Z (mm)	6820	Total inductance (H)	23

Design Study by Hitach Anti-DID Stress Ana.

Cross Section of Anti DID structure

TOSHIBA Study

- TOSHIBA is considering smaller and simpler anti-DID, which meet the field requirement.
- Anti-DID coils are wound in a factory and are set on solenoid in an assembly build on-site.

Design Study by Toshiba Solenoid Field

I.R. (mm)29.7	3215	Axial turn #	40
O. R. (mm)	3570	Radial turn #	11
L (mm)	7350	Total turn #	440
Conductor axial W (mm)	61.3	Current (kA)	22.5
Conductor radial W (mm)	32.3	Current Density (A/mm ²)	11.4
		Ampere Turn (MAt)	29.7

Design Study by Toshiba Anti-DID

I.R. @ Curve (mm)	3760	Straight region elevation angle (degree)	30
O. R. @ Curve(mm)	3768	Radial turn #	150
L @ straight (mm)	1200	Thickness turn #	2
Winding W (mm)	1000	Total turn #	300
Winding Thickness (mm)	8	Current (A)	1067
Conductor Width (mm)	6.67	Current Density (A/mm ²)	40
Conductor Thickness (mm)	4	Ampere Turn (MAt)	0.32

Design Study by Toshiba Anti-DID alternative configuration

EMF in Anti-DID with Yoke and Solenoid

	Fx (MN)		Fy(MN)		Fz(MN)	
	Opera	EXCEL	Opera	EXCEL	Opera	EXCEL
Coil 1	1.59	1.15	-0.33	-0.44	0.00	0.00
Coil 2	-1.59	-1.17	-0.33	-0.44	0.00	0.00
Coil 3	-1.76	-1.27	-0.56	-0.43	0.00	0.00
Coil 4	1.76	1.28	-0.56	-0.43	0.00	0.00

B field by Opera \rightarrow EMF by Excel

Design Study by Toshiba Anti-DID EMF

Design Study by Toshiba Anti-DID EMF

Design Study by Toshiba Anti-DID Support

Anti DID coils are supported by frame wall raising from outer support shell of the main solenoid.

