Methods for a seismic stability validation of the AHCAL structure

Karsten Gadow, Martin Lemke, Felix Sefkow

Mini-Workshop on ILC Infrastructure and CFS for Physics and Detectors KEK, Tsukuba, September 28, 2017

Outline

- Previous studies
- Sub-structuring method
- Validation with a toy model

Static deformations

AHCAL seismic validation

Local stress peaks

local analysis to be refined, structure to be optimised

Local stress peaks

local analysis to be refined, structure to be optimised

Local stress peaks

local analysis to be refined, structure to be optimised

Eigen mode analysis

- > Swinging barrel: 3Hz
- > Swinging module: 8Hz
- > Swinging plate: 6Hz
- > Higher modes: 15 Hz

> Several plates: 45 Hz

dation

Computational challenges

- Within reasonable effort, first 200 eigen modes calculated
- In order to obtain response spectrum with a frequency sweep, need to introduce damping: further complication
- Computation failed
- Possibilities to simplify:
 - omit details: use shells, beams, point masses, rigid bodies
 - loss of realism and predictive power
- More efficient approach: **sub-structured analysis**
 - condense group of elements into a "super-element"
 - model behaviour for the overall structure in a matrix describing the characteristic properties of the super-element
 - rigidity matrix exact, mass and damping matrix approximative

Examples

 Method commonly used in aerospace and automotive engineering since 1970s

Examples

Sub-structured analysis method

- "Component mode synthesis
- Using ANSYS parametric design language APDL
- Generation pass: calculate matrices and master degrees of freedom (MDOF) at super-element boundaries
- Use pass: integrate full structure, using MDOFs
- Expansion pass: back-propagate results into super-elements

Substructuring – Implementation

General AHCAL-Model

> Results CMS-Model:

t

	5 (p	Shell-Model prestressed)	She	ell-Model (free)	CMS-Model (free)		
	Nr.	f [in Hz]	Nr.	f [in Hz]	Nr.	f [in Hz]	
	1	2,97	1	2,83	1	3,13	
	2	5,27	2	5,18	2	5,73	
	3	6,11	3	7,07	3	8,06	
	4	7,65	4	7,46	4	8,41	
лнаха	5	9,16	5	9,94	5	10,84	
	6	9,85	6	11,60	6	12,91	
	7	11,68	7	13,65	7	15,02	
	8	13,32	8	14,70	8	16,47	
	9	14,65	9	15,37	9	16,83	
	10	14,67	10	17,18	10	18,07	
	11	15,76	11	18,75	11	20,38	
	12	17,37	12	19,29	12	21,14	
	13	18,32	13	20,21	13	22,44	
	14	19,37	14	21,46	14	23,34	
	15	20,29	15	22,48	15	24,44	
	16	21,99	16	23,63	16	26,12	
	17	22,83	17	25,52	17	27,06	
	18	24,05	18	31,37	18	32,28	
ANEVE	19	24,49	19	33,39	19	38,16	
Andreis	20	25,23	20	35,12	20	39,50	
	21	31,22	21	41,07	21	41,03	
	22	35,29	22	42,68	22	41,03	
	23	38,82	23	42,68	23	41,03	
	24	39,76	24	42,72	24	41,03	
	25	40,52	25	42,72	25	41,03	
	26	40,55	26	42,72	26	41,03	
	27	41,00	27	42,72	27	41,03	
	28	41,27	28	42,72	28	41,04	
	29	42,32	29	42,81	29	41,04	
Σ, X	30	43.78	30	43.33	30	41.04	

General AHCAL-Model

t 2016_05_11_Shell-Model Modal Total Deformation Type: Total Deformation Frequency: 7,067185988 Hz Unit m

Augentern.

÷

	s (p	Shell-Model restressed)	She (ell-Model (free)	CMS-Model (free)		
	Nr.	f [in Hz]	Nr.	f [in Hz]	Nr.	f [in Hz]	
	1	2,97	1	2,83	1	3,13	
	2	5,27	2	5,18	2	5,73	
	3	6,11	3	7,07	3	8,06	
	4	7,65	4	7,46	4	8,41	
ANSVS	5	9,16	5	9,94	5	10,84	
RL1.0 Raternic	6	9,85	6	11,60	6	12,91	
	7	11,68	7	13,65	7	15,02	
	8	13,32	8	14,70	8	16,47	
	9	14,65	9	15,37	9	16,83	
	10	14,67	10	17,18	10	18,07	
	11	15,76	11	18,75	11	20,38	
	12	17,37	12	19,29	12	21,14	
	13	18,32	13	20,21	13	22,44	
	14	19,37	14	21,46	14	23,34	
X	15	20,29	15	22,48	15	24,44	
L• ×							
Σ	16	21,99	16	23,63	16	26,12	
	17	22,83	17	25,52	17	27,06	
ANSTS K./.J Acalenic	18	24,05	18	31,37	18	32,28	
	19	24,49	19	33,39	19	38,16	
	20	25,23	20	35,12	20	39,50	
	21	31,22	21	41,07	21	41,03	
	22	35,29	22	42,68	22	41,03	
	23	38,82	23	42,68	23	41,03	
	24	39,76	24	42,72	24	41,03	
	25	40,52	25	42,72	25	41,03	
	26	40,55	26	42,72	26	41,03	
	27	41,00	27	42,72	27	41,03	
¥.	28	41,27	28	42,72	28	41,04	
×	29	42,32	29	42,81	29	41,04	
۳z	30	43,78	30	43,33	30	41,04	

Status May 2017, and recent work

- Status 4/2016: validated against full shell model for deformations and eigen-modes
- Resumed fall 2016. following parental leave of key engineer
 - Common project with DESY central mechanics service
 - Progress is slow (< 0.2 FTE)
- Go one step back and establish method with a simpler wheel-type toy model first
- Full analysis chain for toy model appeared in reach for May meeting
- However still many computational problems
- Intensified ANSYS support
 - increasing interest at DESY
 - civil engineering, astrophysics
 - ANSYS provider uses AHCAL as demonstrator
- Concluded toy model study

Test model: ring structure with 8 sectors

- At small scales, represent problem, including several segments, contacts between segments via connection plates, and overall ring shape
- Support analogue to complete AHCAL model, but additional ECAL masses not included
- Can easily be adapted for different investigations
- The full pass through the analysis can in principle be transferred to the AHCAL FE model

Computational progress

- Keep data amount and computing needs under control
- Re-organise analysis flow and re-use of results
- Senerate rotation-symmetric structure automatically
- For toy model quasi-interactive analysis
 - > few 10 seconds turn-around for static case
- > 1. Static deformation under gravity
- > 2. Eigen-Mode analysis
- > 3. Frequency sweep: find resonances
- > 4. Excitation with realistic pulse

3D <> CMS: Static analysis

Pos.	general Meshing	Type (3D/ CMS)	Mesh-Nodes	Total-CPU-time [in sec]	Used RAM [in MB]	Result-File size [in MB]	Max. Deformation [in m]
1	very coarse mesh	3D	13.328	15	211	4,50	2,567E-06
2	coarse mesh	3D	31.821	13	557	11,10	2,586E-06
3	standard mesh	3D	186.370	52	4.818	60,00	2,619E-06
4	fine mesh	3D	315.817	169	10.589	98,00	2,635E-06
5	very coarse mesh	CMS	11.730	21	121	0,90	2,396E-06
6	coarse mesh	CMS	31.766	20	214	1,00	2,494E-06
7	standard mesh	CMS	238.900	148	828	1,50	2,554E-06
8	fine mesh	CMS	369.796	93	1.703	2,00	2,605E-06

3D <> CMS: Modal analysis

Left 3D (Mode1, Mode2), Right CMS (Mode1, Mode2)

Pos.	general Meshing	Type (3D/ CMS)	Mesh- Nodes	Total-CPU- time [in sec]	Used RAM [in MB]	Result-File size [in MB]	Eigenmode 1 at f [in Hz]	Eigenmode 2 at f [in Hz]	Eigenmode 3 at f [in Hz]	Eigenmode 4 at f [in Hz]
1	very coarse mesh	3D	13.328	64	427	284,25	45,08	105,12	136,72	307,56
2	coarse mesh	3D	31.821	116	1.064	826,06	45,11	105,20	139,41	309,64
3	standard mesh	3D	186.370	74	8.144	3.939,51	44,91	104,87	138,56	308,07
4	fine mesh	3D	315.817	890	17.231	5.778,50	44,87	104,73	138,01	307,38
5	very coarse mesh	CMS	11.730	120	162	7,38	45,57	106,86	144,21	317,34
6	coarse mesh	CMS	31.766	166	270	10,38	45,25	105,89	141,38	312,64
7	standard mesh	CMS	238.900	1.885	1.308	23,63	45,01	105,13	139,10	309,03
8	fine mesh	CMS	369.796	1.215	1.772	33,00	46,06	106,15	139,47	308,53

3D <> CMS: Harmonic analysis

> computing needs for frequency sweep

Pos.	general Meshing	Type (3D/ CMS)	Mesh-Nodes	Total-CPU- time [in sec]	Used RAM [in MB]	Result-File size [in MB]	Max. Deformation [in m]
1	verv coarse mesh	3D	13.328	566	250	3.670.00	4.847E-03
2	coarse mesh	3D	31.821	1.232	590	11.261,11	4,838E-03
3	standard mesh	3D	186.370	3.640	4.874	60.526,67	4,882E-03
4	fine mesh	3D	315.817	10.200	11.016	93.694,34	
5	very coarse mesh	CMS	11.730	1.703	162	125,69	4,739E-03
6	coarse mesh	CMS	31.766	22.620	232	181,50	4,807E-03
7	standard mesh	CMS	238.900	15.840	1.233	421,63	4,860E-03
8	fine mesh	CMS	369.796	24.540	1.758	595,00	4,647E-03

Boundary conditions harmonic analysis

> apply acceleration amplitude in all 3 directions to supports
> Sweep 0Hz - 3.000Hz

becaus of theceleration_hx_x							
-	Scope						
	Boundary Condition	Fixed Support					
-	Definition	^					
	Base Excitation	Yes					
	Absolute Result	Yes					
	Define By	Magnitude - Phase					
	Magnitude	8, m/s²					
	Phase Angle	0, "					
	Direction	X Axis					
	Suppressed	No					

3D <> CMS: Harmonic analysis

- > CMS-Modell with "Standard Mesh"
- > Results for x direction: maximum displacement over full side contour

Vergleich 3D <> CMS: Harmonische Analyse (MSUP)

- Same Bode plot for 3D-Model with "Standard Mesh"
- Maximum in x-direction

Both

> CMS

> 3D

CMS: Response spectrum analysis

- > Using earth quake data by NIED (Ichoniseki, 2011)
- For each axis input pulse on all supports
- Full pass through analysis successful

CMS: Response Spektrum Analysis

> Maximum amplitude 0.5mm

Summary & Outlook

- CMS method is our only possibility for a dynamical calculation of complex calorimeter model
- Method validated against full 3D mesh calculation on a toy model that reproduces main features
 - > final step still to be cross-checked
- > Significant reduction in computing resource needs
- Next: apply to AHCAL structure
- > Will also not be straight-forward
 - > definition of sub-structures and boundaries needs engineering intuition
 - > cross-checks with 3D model only possible up to modal analysis
 - > then systematic studies
- > However, we now know that we can do it

Backup

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- Next steps:
- Complete analysis
- > Outlook:
- Validation
- > use existing structures
- on a shaker

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- > Next steps:
- > Complete analysis
- Outlook:
- Validation
- > use existing structures
- on a shaker

Conclusion

- Challenging project, new difficulties encountered at every step
- > Circumventing computing power limitations requires brain power
- > Next steps:
- Complete analysis
- > Outlook:
- Validation
- > use existing structures
- on a shaker

Design challenges

- Stainless steel
- Fine longitudinal sampling
 - 2cm plate thickness only
- No cracks, minimal uninstrumented regions
- Inside coil radius:
 - compact design to maximise no. of hadronic interaction lengths
 - tight tolerances over large dimensions
- Accessible electronics
 - external: short access
 - internal: longer shutdown or upgrade
- Earth quake stability
 - computational challenge

Small modules

48 sensitive layers 49 absorber plates 26.5 mm pitch

 Small sectors (<18t) for easy transport and assembly in situ

Design features

- Uniform sampling along shower axis
- Structure is made from rolled steel plates
 - flatness with roller levelling within 1mm verified
 - no machining: cost effective
- Assembly with screws
 - moderate tolerances
 - damping oscillations
- Thin side walls (5mm)
- 16 phi sectors, 2 rings
- Flexible structure, matched to flexibility of scintillator cassettes
- Varying layer width no problem for scintillator

Cassettes

- Housing the scintillator and electronics active layers
- Made from stainless steel and contributes to absorbing material
- Sum of absorber plate and cassette thickness = 20 m / layer
 - for both AHCAL and SDHCAL
 - material in absorber plate contributes to rigidity of structure
 - material in cassette contributes to load on structure
- AHCAL Physics prototype and early designs had 16 + 2x2 mm
- Present design and new prototype have 19 + 2x0.5 mm
- Weight is 17 kg /m2
 - cf SDHCAL 48 kg / m2 with 2x 2.5 mm cassette

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

- Earlier studies have shown that the "roman arc" structure shows less deformation with a tip at the top than with a flat top
- However, this leads to a conflict with ECAL endcap module structure and square insert

Alternative

- Integration into cryostat done
- Stability calculation to be re-done
- Expect somewhat larger deformations
- On the other hand, stability improves with
 - up-to-date plate thickness
 - 16 -> 19mm
 - possibly even thicker plates
 - smaller radius

Module installation

• need some modification of module connection pates