Positron WG (Jun.13.2017, TCMB)

- Last meeting on Jun.1
- Discussion
 - Undulator radiation on the masks and inner surface of undulator
 - Finalized the status report for the meeting with Lyn (Jun.6)
 - conclusion page attached
- AWLC agenda
 - Latest version attached

Conclusions

- Neither scheme is not ready now.
- e-Driven scheme seems to be closer to reality
- But obviously undulator scheme is better if feasible (polarization)
- So, we cannot down-select now
 - When can we decide? In 2019 after 2-3 year R&D?
- Tentative decision in April was (in view of the limited money and manpower)
 - Continue the on-going works for e-driven in JFY2017
 - Concentrate more on undulator in JFY2018-19
- Main R&D issue for the undulator scheme is the mechanical performance of the target wheel.
- Flux Concentrator for undulator seems very difficult due to the time dependence of the field. A possibility when FC fails is the QWT. TDR says the positron yield with QWT is ~1/1.6 times FC (this number must be confirmed). Are we satisfied with a lower luminosity? (This is a question for the future.)

Positron session agenda

6/26	Duration	Title	Speaker	6/27	Duration	Title	Speaker
9:00	0:30	Positron WG status	K. Yokoya	9:00	0:30	A start to end simulation of E-driven Positron Source for ILC	M. Kuriki
9:30	0:30	Radiation Cooling Target Status	S. Riemann	9:30	0:30	Rotation Target R and D of E-driven source	T. Omori:
10:00	0:30	The latest results of MAMI exp.	A. Ignatenko	10:00	0:30	Energy deposition around the target of the E-driven e+ source	T. Takahash
10:30	0:20	Break		10:30	0:20	Break	
10:50	0:30	Contact Cooling Target	Wei Gai	10:50	0:30	Target stress simulation of the E-driven source	Song Jin
11:20	0:30	Water Fall Photon Dump and window	P. Sievers	11:20	1:00	Discussion on Target/PD R&D	All
11:50	0:30	Energy deposition in flux concentrator by undulator photons at 250 GeV center-of-mass energy	A. Ushakov	12:20	1:30	Lunch	
12:20	1:30	Lunch					