Top-quark Physics

横谷洋 (Hiroshi YOKOYA), KIAS

ILC夏の合宿, 乗鞍高原温泉, 7.21-24 (2017)

Top-quarkの歴史

<u>素粒子年表:</u>

- 1970 GIM機構 (fermion2重項) 1973 小林-益川理論 (第3世代) 1974 charm-quark 1975 tau-lepton 1977 bottom-quark (m_b ~ 5 GeV) 1979 gluon 1983 W- & Z-bosons
- '90s~ m_t > 30 GeV (TRISTAN) m_t > 69 GeV (SppS) EW fit (LEP) → 間接的制限 m_t > m_w → no hadronization

1995 discovery at Tevatron

2000 tau-neutrino 2010 re-discovery at the LHC 2012 Higgs-boson

Top-quarkの重要性

$$16\pi^2 \mu \frac{d\lambda}{d\mu} = 24\lambda^2 - 6y_t^4 + \cdots$$

標準模型が破綻するスケールは、 トップ質量に大きく依存

• 電弱精密測定:

TOP-QUARK

PHYSICS ILC CAMP 2017

$$\delta \rho \sim \frac{3y_t^2}{32\pi^2} - \frac{3g'^2}{32\pi^2} \ln \frac{m_h}{m_Z}$$

トップ質量は2次で効く。 トップ質量の不定性を抑えることで、 BSM物理が探究出来る。

さらに、もしかしたら、top-quark は、

- 1. EWSBの起源に関係しているかもしれない
- 2. (比較的軽い) partner粒子が存在するかもしれない
- 3. 暗黒物質と結合しているかもしれない

Composite Higgs models, Supersymmetric models, Top-portal DM models,,,

ILCでは、質量測定, カップリング測定(top-Yukawa, ttZ,,,)の精度の飛躍的な向上が期待される

Topは、ILC物理の主役の一つ (Higgs, Top & BSM)

Top-quark at the ILC

2つの重要な散乱過程:

TOP-QUARK

PHYSICS **ILC CAMP 2017**

$$e^+e^- \to t\bar{t}$$

$$\sqrt{s} = 350 \ {
m GeV} \sim 500 \ {
m GeV}$$

Т

threshold scan: $(m_t, \Gamma_t, \alpha_s, y_t)$

high-energy: $t\bar{t}Z$ couplings

$$e^+e^-
ightarrow tth \sqrt{s} = 500 ext{ GeV} \sim (550 ext{ GeV})$$

 $\sim 1 \text{ TeV}$

top-Yukawa coupling の直接測定 $y_t = \sqrt{2}m_t/v \sim 1$ (+ 位相変化によるCP測定)

Top-quarkの質量

トップ質量測定の現状:

統計誤差 系統誤差 PDG Avg. (主にTevatron data): $m_t = 173.21 \pm 0.51 \pm 0.71 \,\,{
m GeV}$ $m_t = 172.44 \pm 0.13 \pm 0.47 \text{ GeV}$ CMS Comb. : $m_t = 172.84 \pm 0.34 \pm 0.61 \text{ GeV}$

ATLAS Comb. :

ATLAS Preliminary	m _{ton} summary - M	ay 2017, L = 35	5 pb ⁻¹ - 20.3 fb ⁻¹	
,	iop -	m _e	→ → ± tot. (stat.±JSF±bJS	F ± syst.)
I+jets* CONF-2011-033 L _{ist} = 35 pb ⁻¹		169	.3 ± 6.3 (4.0	± 4.9)
I+jets Eur. Phys. J. C72 (2012) 2046 L _{ine} = 1.04 fb ⁻¹		 174	$.5 \pm 2.4$ (0.6 \pm 0.4	± 2.3)
all jets * CONF-2012-030		174	.9 ± 4.3 (2.1	± 3.8)
all jets Eur. Phys. J. C75 (2015) 158		175	.1 ± 1.8 (1.4	± 1.2)
single top* ^{CONF-2014-055}		172	.2 ± 2.1 (0.7	± 2.0)
I+jets Eur. Phys. J. C75 (2015) 330		172	.3 ± 1.3 (0.2 ± 0.2 ± 0.7	± 1.0)
dilepton L = 4.7 fb ⁻¹		173	.8 ± 1.4 (0.5	± 1.3)
dilepton Phys. Lett. B761 (2016) 350		173	.0 ± 0.8 (0.4	± 0.7)
all jets arXiv:1702.07546 L _{int} = 20.2 fb ⁻¹		1 73	.7 ± 1.2 (0.6	± 1.0)
σ(tī) I+jets	•	166	.4 ± ^{7.8} _{7.3}	
$\sigma(t\bar{t})$ dilepton Eur. Phys. J. C74 (2014) 3109		172	$.9 \pm \frac{2.5}{2.6}$	
$\sigma(t\bar{t}+1-jet) \xrightarrow{JHEP \ 10 \ (2015) \ 121}_{L_{ac}=4.6 \ fb^{-1}}$		173	.7 ± ^{2.3} _{2.1}	
TLAS Comb. June 2016 Phys. Lett. B751 (2016) 172.84 ± 0.70 World Comb. Mar. 2014 (arXiv:1403.4427) 173.34 ± 0.76 Tevatron Comb. Jul. 2014 (arXiv:1407.2882) 174.34 ± 0.64	150 	World Cc stat. unce stat. ⊕ J3 total unce *Prelimin	omb. ± 1 σ ertainty SF ⊕ bJSF uncertainty ertainty ary, →Input to ATLAS c 	omb.
160 165	170	175 180	185	1
			m _{tc}	_p [GeV

Pole-mass, MS-mass

量子論では、繰り込み処方を通じて質量を定義する

 $S_F(p)^{-1} = p - m - \Sigma(p) + \delta m_{\rm CT}$

Pole mass:
$$S_F(p)^{-1} \simeq p - m_{\text{pole}}$$

プロパゲーターの極の位置として定義される。しかし、フリーなクォーク は存在しないため、物理的な意味はない。UV発散とIR発散を繰り込む。 Pole質量を用いた摂動計算は、収束性が悪いことが知られている。

MS(bar) mass:
$$\delta m_{\rm CT} = \Sigma(p) \Big|_{\frac{1}{\epsilon} - \gamma_E + \ln 4\pi}$$

次元正則化における発散項(+幾何学因子)のみを引き算する。 単なる理論のパラメーター。UV発散のみを繰り込むshort-distance massの一種。高次補正の計算に適している。

Template Method

<u>Template method</u>: トップ崩壊からの(b-)ジェットやレプトンの運動量で構成した 測定量を、モンテカルロシミュレーションと比較して best-fitによって質量を決める。

(J_B-J-J)の不変質量は、正確には、top-quarkのpole-massではない。

クォークはカラー価を持つのに対して、 ジェットはカラー価を持たないハドロンを集めたもの。

TOP-QUARK

PHYSICS ILC CAMP 2017

クォークはカラー価を持ち、ハドロン化するま での間、他のクォーク・グルーオンとの相互作 用が切れない。(Color Reconnection効果)

ハドロン化の仕組みはQCDから導くことが出 来ず、モデル計算に頼っている。

さらに、Initial-State Radiation, Underlying Eventなどの寄与が加わり、ジェット運動量に 対して非自明な影響を与える。

典型的に、 $M_{jjj} - m_t^{\text{pole}} = \pm \mathcal{O}(1)$ GeV

Template methodで測った質量は、MC質量と呼ばれる。

MC質量: モンテカルロイベントジェネレータ(Pythia, Herwig,,,) のパラメータとしてのトップ質量。 理論の基本変数としての質量との関係は自明ではない。 $\tau_2^{\text{peak}} = 1 - \sqrt{1 - \frac{4m_t^2}{O^2}}$

MC Calibration

MC質量と"理論的に良く定義された質量"とを結びつける研究は試みられているが、 ハドロンコライダーでの実用的段階までには至っていない。

A. Hoang et al., PRL(2016)

MCジェネレータの分布を、理論式でフィットする。 (フィットパラメータは、トップ質量と非摂動係数)

MC質量と理論式の質量との対応を得る。

測定量依存性がある → 測定量になるべく近い量を計算しなければいけない。

Pole-mass from σ_{tt}

TOP-QUARK

PHYSICS ILC CAMP 2017

	m_t
NNPDF3.0	$173.6 \pm ^{1.7}_{1.8} \text{GeV}$
MMHT2014	$173.9 \pm {}^{1.8}_{1.9} \text{ GeV}$
CT14	$174.1 \pm ^{2.1}_{2.2} \text{GeV}$

170 171 172 173 174 175 176

m, [GeV]

その他にも様々な方法が提唱され、実際に測定も行われている

(ただし、殆どがMC質量)

- Kinematic endpoint: $M_{T2} = \underset{\mathbf{p}_{T,1}+\mathbf{p}_{T,2}=\mathbf{p}_{T}}{\min} [\max\{M_{T}(X, \mathbf{p}_{T,1}), M_{T}(Y, \mathbf{p}_{T,2})\}]$...;Cho,Choi,Kim,Park;...
- B-hadron lifetime: $L_B = \beta \gamma c \tau_B$ Hill,Incandela,Lamb
- J/ ψ + lepton: $M_{J/\psi(\rightarrow \mu\mu)+\ell}$
- tt + jet shape: $d\sigma/dM_{ttj}$
- B-jet energy peak: $E_b^{\text{peak}} = \frac{m_t^2 m_b^2 + m_W^2}{2m_t}$
- Leptonic moments: $\langle (p_T^{\ell})^n \rangle, \langle (E^{\ell})^n \rangle,$
- Single-top enriched:
- (Leptonic weight integral, Diphoton spectrum,...)

 $0.5 \leftarrow lepton + jets,$ $0 \quad Run \ I \quad 0.3 \ ab^{-1}, 14 \ TeV \quad 3 \ ab^{-1}, 14 \ TeV \quad \delta m_t \sim 0.2 \ GeV \ (MC \ mass)$

• LHC run-II, HL-LHCで、統計誤差は順調に減少する

Fotal uncertainty on m_{t} [GeV]

2

2.5

.5

- 検出器の理解、MCの調整等で、系統誤差を減らす試みも調べられている
- MC質量の不定性については、考慮されていない→ 理論側の発展が必要

ILC "Threshold Scan"

Threshold Scan: トップ対のしきい値付近での生成全断面積の変化を見る

14

しきい値付近では、トップは非相対論的 (v/c « 1) \rightarrow (α_s /v)ⁿ型補正(クーロン補正)を再足し上げする必要がある

NRQCDの計算

-

Green関数のピーク ⇔ (1S) Topponiumのエネルギー準位

Penin, Steinhauser; Beneke, Kiyo, Schuller; Kiyo, Sumino; Anzai, Kiyo, Sumino; Smirnov, Smirnov, SteinHauser; Marquard; Smirnov, Smirnov, Steinhauser

$$M_{1S} = 2m_t + \Delta E_{1S}$$

リノマロン相殺

<u>リノマロン:</u> QCDの摂動計算が漸近展開であることから由来する理論予言の不定性。 SD質量処方を使うことで、摂動各次数で不定性をキャンセルさせながら、エネルギー準位が計算出来る。

Pole-mass scheme

収束性が悪く、不定性もなかなか減っていかない; $\delta_{N_{LO}}^{3} \sim 0.4 \text{ GeV}$

MSbar-mass scheme

Kiyo, Mishima, Sumino

収束性が良く、不定性も大きく減っていく; $\delta_{N_{LO}}^{3} < 0.1 \text{ GeV}$

実験測定の精度

<u>最新のスタディ:</u> N³LO + ISR + LS (ILC, CLIC, FCCee) F. Simon et al.

ILC:

fit uncertainty: 28.5 MeV (18 MeV stat) scale uncertainty: 40 MeV

FCCee:

fit uncertainty: 27 MeV (15.5 MeV stat) scale uncertainty: 40 MeV

 崩壊幅、湯川結合も決まる。 (α_sを固定した場合の full simulation) 〔 質量 $\delta m_t^{\text{fit}} \simeq 16 \text{ MeV}$ 崩壊幅 $\delta \Gamma_t \simeq 21 \text{ MeV}$ 湯川結合 $\delta y_t \simeq 4\%$

Horiguchi et al. (13)

光子対を用いる方法

Diphoton mass spectrumを見るだけで、 トップ質量が測れる!

- ハドロンコライダーでも、
 光子運動量の測定精度は良い。
- Short-distance massが測れる。 (e+e-でのthreshold scanと同じ理屈)

LHC 13TeV, 3000fb⁻¹ での測定精度を シミュレーションして見積もってみると、

統計が足りず、それほどの精度は出ない、、

20

まとめ

Topは、ILC物理の主役の一つ

質量測定, カップリング測定(top-Yukawa, ttZ,,,)の精度の飛躍的な向上が期待される。

質量: threshold scan @350GeV $\rightarrow \delta m_t \sim 50$ MeV (short-distance mass)

Yukawa結合: tth @**1TeV** $\rightarrow \delta y_t \sim 4\%$

ttZ結合: $e^+e^- \rightarrow tt @500GeV \rightarrow 数% レベル_{\rightarrow 東北大 佐藤さん}$

LHCのトップ質量測定は 既に十分な精度が出ているけれど、 QCDによる理解が追いついていない。 → 新しい手法や、理論の進展が必要。

TOP-QUARK	
PHYSICS	22
ILC CAMP 2017	