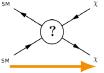
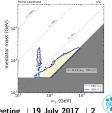
WIMP Search: Update

Moritz Habermehl

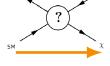

ILD Software / Analysis Meeting

19 July 2017



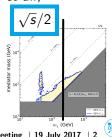
The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

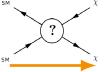

- \Rightarrow idea: SM particles \rightarrow WIMP pair production
- singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])
- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017

The Physics Case


- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])

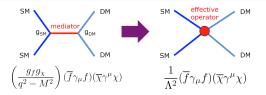

 \Rightarrow idea: SM particles \rightarrow WIMP pair production

- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

The Physics Case

- Weakly Interacting Massive Particles (WIMPs) are candidates for dark matter
- WIMPs can be searched for
 - directly
 - indirectly
 - at colliders

 singlet-like fermion WIMP (Shigeki Matsumoto et al., arxiv:1604.02230])


 \Rightarrow idea: SM particles \rightarrow WIMP pair production

- likelihood analysis of
 - Planck, PICO-2L, LUX, XENON100
 - LEP, LHC
 - plus LZ, PICO250 projections
- Is the ILC sensitive in the surviving region?

xi Matsumoto et al., $\sqrt{s/2}$ $M_{med} \approx 2 \text{ TeV}$ g region?

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017

Theoretical Framework: Effective Operators

1. classify WIMP based on its quantum numbers

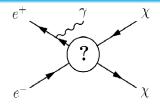
(example: vector-like fermion WIMP and vector-like operator)

- 2. construct minimal effective Lagrangian
 - assumption:

new physics interaction is mediated by a heavy particle

- interaction can be integrated out
- four-point contact interaction
- \Rightarrow general approach
- \Rightarrow only one parameter ("energy scale of new physics")

 $\Lambda = M_{mediator} / \sqrt{g_f g_{\chi}}$ and $\sigma \propto 1 / \Lambda^4$


WIMP Detection at ILC

• Signal

- WIMP pair production with a photon from initial state radiation $a^+a^$
 - $e^+e^- \rightarrow \chi \chi \gamma$
- quasi model-independent
- single photon in an "empty" detector
 - \rightarrow missing four-momentum
- observables: E_{γ} , θ_{γ}

• Main Background Processes

- Neutrino pairs $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
 - irreducible
 - polarisation: enhance or suppress
- Bhabha scattering $e^+e^-
 ightarrow e^+e^-\gamma$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

WIMP Detection at ILC

• Signal

- WIMP pair production with a photon from initial state radiation
 - $e^+e^-
 ightarrow \chi \chi \gamma \gamma$
- quasi model-independent
- single photon in an "empty" detector
 - \rightarrow missing four-momentum
- observables: E_{γ} , θ_{γ}

• Main Background Processes

- Neutrino pairs $e^+e^- \rightarrow \frac{\nu\bar{\nu}\gamma\gamma\gamma\gamma}{\nu\bar{\nu}\gamma\gamma\gamma\gamma}$
 - irreducible
 - polarisation: enhance or suppress
- Bhabha scattering $e^+e^- \rightarrow \frac{e^+e^-\gamma\gamma\gamma}{2}$
 - huge cross section
 - cross section rises for low polar angles
 - mimics signal if leptons in forward region are undetected

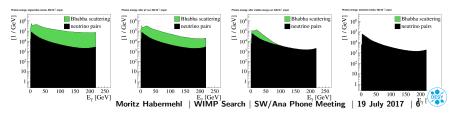
New Monte Carlo Samples

- generated with WHIZARD: completely new setup
 - new signal definition \rightarrow different preselection cuts
 - gap in Bhabha phase space filled
 - ISR treatment: double-counting avoided
- centrally produced by ILD
 - detector simulation: Mokka, ILD_o1_v05 (TDR)
 - reconstruction: Marlin, 17-11

	cross-section	events	int. luminosity
neutrino pairs: $ uar u + 1-4\gamma$			
$P(e^{-})=L, P(e^{+})=R$	28093	14,745,059	524.9
$P(e^{-})=R, P(e^{+})=L$	1938	1,161,407	599.4
Bhabha scattering: $e^-e^+ + 1$ -3 γ			
$P(e^{-})=L, P(e^{+})=L$	123911	2,994,007	24.2
$P(e^{-})=L, P(e^{+})=R$	133071	2,994,006	22.5
$P(e^{-})=R, P(e^{+})=L$	130234	2,994,006	23.0
$P(e^{-})=R, P(e^{+})=R$	123917	2,994,007	24.2

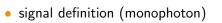
Photon energy: neutrino pains, P _==60%, P _==30%, 580 fb 1

50 100 150 200 250 300 E_v [GeV]

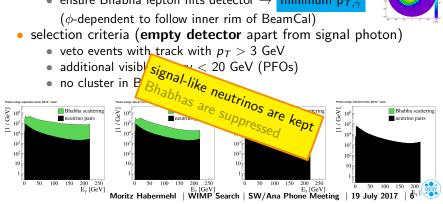

Ey,max=220GeV

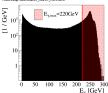
BeenCal Laver

[1 / GeV]


Event Selection: Criteria

- signal definition (monophoton)
 - distinguish photon from electron
 - ightarrow need tracker ightarrow $|\cos heta_{\gamma}| < 0.996$
 - avoid large background at Z return ightarrow E $_{\gamma}$ < 220 GeV
 - ensure Bhabha lepton hits detector ightarrow minimum p $_{T,\gamma}$
 - (ϕ -dependent to follow inner rim of BeamCal)
- selection criteria (empty detector apart from signal photon)
 - veto events with track with $p_T > 3 \text{ GeV}$
 - additional visible energy < 20 GeV (PFOs)
 - no cluster in BeamCal





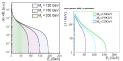
Event Selection: Criteria

- distinguish photon from electron
 - \rightarrow need tracker $\rightarrow |\cos \theta_{\gamma}| < 0.996$
- avoid large background at Z return \rightarrow $E_{\gamma} < 220$ GeV
- ensure Bhabha lepton hits detector \rightarrow minimum p_{T, v}
- selection criteria (empty detector apart from signal photon)

Selection Efficiencies: Neutrinos

tion Efficienci	on Efficiencies: Neutrinos			events Per	
	sig. def.	no p $_{T} > 3 \text{GeV}$	no $E_{vis} > 20 GeV$	no BCal cluster	
eutrino pair production	0		113		
$\nu \bar{\nu} \gamma$	3770.1	3639.6	2977.4	2967.9	
		96.54%	78.97%	78.72%	
previously		97.68%	91.60%	89.83%	
$\nu \bar{\nu} \gamma \gamma$	863.2	822.7	512.8	465.2	
		95.31%	59.40%	53.89%	
previously		94.52%	69.28%	66.37%	
$\nu \bar{\nu} \gamma \gamma \gamma$	99.8	93.9	42.5	34.9	
		94.13%	42.58%	35.00%	
previously		92.13%	46.54%	43.50%	
$\nu \bar{\nu} \gamma \gamma \gamma \gamma$	7.7	7.2	2.2	1.7	
		92.70%	29.12%	21.80%	

- efficiency goes down for increasing number of photons ٠
- overall level OK
- too many events lost due to low p_T overlay \rightarrow visible energy ٠ cut will be adjusted


Selection Efficiencies: Bhabhas

ction Efficiencies: Bhabhas		events per fb-1		
	sig. def.	no p $\tau > 3 \text{GeV}$	no $E_{vis} > 20 \text{GeV}$	no BCal cluster
Bhabha scattering	sig. uer.	10 p7 > 3 dev	$10 L_{VIS} > 20 GeV$	no Dear cluster
$e^-e^+\gamma$	F0001 4	20562.7		204.6
	59081.4	30562.7 51.73%	5856.0 9.91%	204.0 0.35%
previously		21.10%	15.99%	0.29%
$e^-e^+\gamma\gamma$	6930.9	2345.7	207.9	5.2
		33.84%	3.00%	0.07%
$e^-e^+\gamma\gamma\gamma\gamma$	450.8	96.4 21.38%	5.3 1.17%	0.1 0.02%

- per mill level suppression
- BeamCalClusterReco works
- despite different setup: overall suppression similar to previous • analysis (Christoph Bartels)

Limit Calculation

- 1. reweigh $\nu\bar{\nu}$ events to WIMP events
 - different effective operators: vector, axial-vector, scalar
 - weight: $d\sigma(e^+e^- \rightarrow \chi\chi\gamma)/dE_{\gamma} / d\sigma(e^+e^- \rightarrow \nu\bar{\nu}\gamma)/dE_{\gamma}$
- 2. signal input: photon energy distribution for different ${\rm M}_{\chi}$

3. background input: photon energy distribution

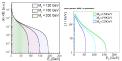
- 4. limit calculation
 - shape information is used
 - remember: $\sigma \propto 1/\Lambda^4$

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017

Limit Calculation

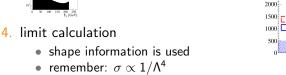
- 1. reweigh $\nu \bar{\nu}$ events to WIMP events
 - different effective operators: vector, axial-vector, scalar
 - weight: $d\sigma(e^+e^- \rightarrow \chi \chi \gamma)/dE_{\gamma}/d\sigma(e^+e^- \rightarrow \nu \bar{\nu} \gamma)/dE_{\gamma}$

≥3500 23000


2500

4000 fb⁻¹ (H20)

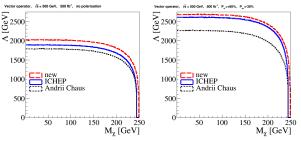
500 fb⁻¹


50 100

2. signal input: photon energy distribution for different M_{χ}

background input: photon energy distribution 3.

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017

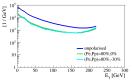

200

M. [GeV]

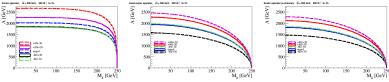
150

Comparison to Previous Results

- improvement from "Andrii Chaus" to "ICHEP"
 - improved reconstruction (especially BeamCalClusterReco)
- improvement to "new"
 - new signal definitino has larger signal phase space
 - improvement despite larger Bhabha phase space

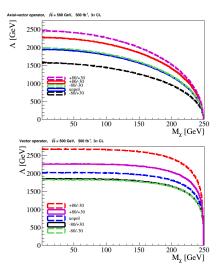

no beam polarisation	neutrino pairs	
signal definition	$2863.0 \rightarrow 4741$	
selected events	$2479.2 \rightarrow 3470$	

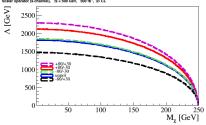
Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017


10

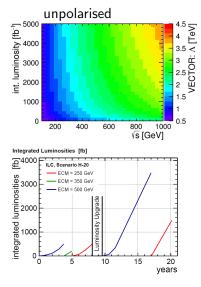
Role of Polarisation

N _{500fb-1}	unpolarised	$P_{e-} = +80\%$
		$P_{e+} = -30\%$
$ u u \gamma$	2479.19	483.51
$e^+e^-\gamma$	84.74	83.06


- background
 - neutrinos can be suppressed for right-handed e^- and left-handed e^+
- WIMPs
 - production can be enhanced
 - chirality of interaction can be tested



The Different Effective Operators

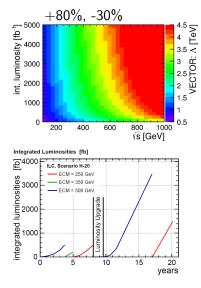

Scalar operator (s-channel), (s = 500 GeV, 500 fb⁻¹, 3d CL

- polarised cross sections
 - vector operator:

 $\sigma_{II} = \sigma_{RR} = 0$

 axial-vector and scalar operators: $\sigma_{IR} = \sigma_{RI} = 0$

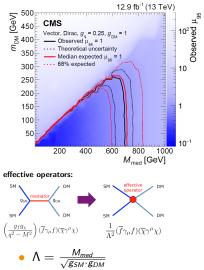
Sensitivity in Different Operation Scenarios



- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
 - allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- one of the few BSM channels for which new phase space can be explored also at 250 GeV
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017 | 13

Sensitivity in Different Operation Scenarios



- extrapolation of sensitivity from full simulation at 500 GeV
 - reachable Λ at different \sqrt{s} and integrated luminosities
 - for small M $_\chi$ (< 100 GeV)
 - allows to give estimates for sensitivity
 - for different time scales
 - for different running scenarios
- one of the few BSM channels for which new phase space can be explored also at 250 GeV
 - centre-of mass energy (slightly) higher than at LEP
 - more luminosity
 - polarisation

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 19 July 2017 | 13

CMS vs ILC I

- latest CMS results for mono-photon WIMP search: arxiv:1706.03794
- figure: vector operator in the framework of simplified models

simplified models:

 approach: fix couplings, present limits for M_{med}

CMS vs ILC II

- LHC DM working group recommends
 - g_{SM} =0.25 \rightarrow small \rightarrow avoid sizeable di-jet production: qq \rightarrow new mediator \rightarrow qq
 - $g_{DM} = 1 \rightarrow big$ completely arbitrary, leads to best exclusion limits

• assumption:
$$g_{sm}^q = g_{sm}^l$$

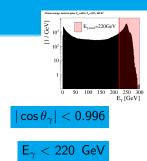
• from EFT to simplified models:

 $\mathsf{M}_{\textit{med}} = \sqrt{g_{\textit{SM}} \cdot g_{\textit{DM}}} \cdot \Lambda = 0.5 \cdot \Lambda$

- blue shaded area: EFT only valid for ${\rm M}_{med} > \sqrt{s}$
- red dashed line: $M_{med} = 2M_{\chi}$

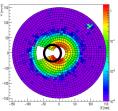
Summary: WIMP Search

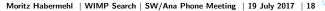
- limits could be improved with new samples
- ILC is still more sensitive than LHC
 - now even compatible WIMP masses
 - depends on assumptions
- what remains to be done
 - update systematic uncertainties in limit calculation
 - improve cuts
 - few technicalities
- I'm going to attend the *Rencontres du Vietnam* conference *Exploring the Dark Universe*


Signal Definition

- observables: E_{γ} , θ_{γ}
- motivations for signal defining conditions
 - distinguish photon from e⁻/e⁺
 → need tracker: maximum cos(θ)
 - avoid large backgrounds at Z return (242 GeV for $\sqrt{s} = 500$ GeV): maximum E_{γ}
 - distinguish photon from noise: minimum E_{γ} or $p_{T,\gamma}$
 - ensure that one e^-/e^+ in Bhabha events is detected,
 - i.e. does not go down the beam pipe \rightarrow minimum $p_{\mathcal{T},e}$
 - \rightarrow counterbalanced by minimum $p_{T,\gamma}$
- in order to describe BeamCal hole best: ϕ dependent sig. def.
 - $p_{\mathcal{T},e} > 5.7 \text{ GeV}$ for $|\phi| \ge 141.5$
 - \Leftrightarrow p_{T, \gamma} > 5.7 GeV for $|\phi| \leq 38.5$

 \Leftrightarrow p_{T,\gamma} > 2.0 GeV for $|\phi| > 38.5$


• $p_{T,e}>$ 2.0 GeV for $|\phi|<$ 141.5



Signal Definition: Why New Samples?

- 1. old signal definition: $p_{T,min}$ was too small
- $\rightarrow~e^-e^+$ from Bhabha events could escape detection $_{\tiny BeanCallayer3}$

- 2. $p_{T,min}$ instead of $E_{\gamma,min}$ and $\theta_{\gamma,min}$
- ightarrow leads to larger phase space of signal definition
- \Rightarrow pre-selection cuts adjusted to new signal definition

