

Complementary $M_{\rm H}$ Measurements at ILC (i) Threshold cross-section, ii) Direct reconstruction

Graham W. Wilson

July 19, 2017

Graham W. Wilson

Complementary M_H Measurements at ILC

Higgs Mass Measurements

- LHC is and will continue to measure $M_{\rm H}$ using direct mass reconstruction in the $\gamma\gamma$ and 4-lepton channels. Current PDG average has an error of 240 MeV based on RunI data.
- ILC can measure the Higgs mass cleanly using the recoil mass in the dilepton channels. H20 precision estimate is 14 MeV. Higher \sqrt{s} of limited utility.

Today: Alternative and Complementary ILC Higgs Mass Measurements

- $M_{\rm H}$ from the Threshold Cross-Section
- Direct reconstruction of $M_{\rm H}$ at ILC. Assume 1M produced Higgs particles over the course of the program. Focus for now on 4I and $\mu\mu$.

For direct reconstruction, the issue for each channel, is can one win statistically and systematically in terms of $M_{\rm H}$ precision compared to LHC.

$$\Delta M = \sigma_M / \sqrt{N}$$

Typically with a factor of 100 more events at LHC, one needs the detector mass resolution to be 10 times better than LHC. LHC systematic wall? 0.01–0.1 σ_M ?

Introduction: $M_{\rm H}$ from Threshold Cross-section

Nominal threshold for ZH production is $M_{
m H} + M_{
m Z} pprox 216.2 \ {
m GeV}$

Measurement of the ZH cross-section can be used to determine $M_{\rm H}$.

 $M_{\rm H}$ will likely be known to at least 100 MeV, so no need to scan.

Modest statistics - so statistics dominated measurement. Less need and less advantage (than WW threshold) for a (polarized) scan.

Optimal $\sqrt{s} \approx 216.5$ GeV. How accurate? How much lumi?

Threshold Cross-section Statistical Sensitivity Study

- Calculate $e^+e^- \rightarrow \nu_{\mu}\overline{\nu}_{\mu}H$ (ZH-like) cross-sections with Whizard 2.5
- $B(Z \rightarrow \nu_{\mu} \overline{\nu}_{\mu}) = 0.067$
- Include ISR. For now have neglected beam-spread and beam-strahlung
- Study various beam polarization scenarios
- Statistical sensitivity from signal statistics depends on the statistical error on the cross-section measurement and the slope of the cross-section dependence on $M_{\rm H}$

$$\Delta M_{\rm H} = \sqrt{\sigma} \left| \frac{d\sigma}{dM_{\rm H}} \right|^{-1} \frac{1}{\sqrt{\varepsilon \mathcal{L}}}$$

 \bullet Similar considerations for $M_{\rm W}$ at LEP161 led to

$$\Delta M_{
m W} = 29 \ {
m MeV} \ / \ \sqrt{arepsilon \mathcal{L}({
m fb}^{-1})}$$

Threshold Cross-section Study Method

- Polynomial fits to $e^+e^- \rightarrow \nu_{\mu}\overline{\nu}_{\mu}H$ cross-section vs $M_{\rm H} - 125.0 \text{ GeV}$ for each \sqrt{s}
- Errors are Whizard integration errors
- Increase polynomial degree if resulting χ^2 lowered by more than 1
- $B(Z \rightarrow \nu_{\mu} \overline{\nu}_{\mu}) = 0.067$
- Statistical sensitivity coefficient, at $M_{\rm H} = 125.0 \text{ GeV},$ $\alpha \equiv \sqrt{\sigma} \left| \frac{d\sigma}{dM_{\rm H}} \right|^{-1}$, is given by $\sqrt{A0}/|A1|$. So for $\sqrt{s} = 216.5 \text{ GeV}$: • $\alpha = 1.08 \text{ GeV}/\sqrt{\text{fb}}$ • $\alpha_{ZH} \approx \alpha \sqrt{B(Z \rightarrow \nu_{\mu} \overline{\nu}_{\mu})} = 280 \text{ MeV}/\sqrt{\text{fb}}$

 $\sigma=$ 3.6 fb. $\sigma_{\rm ZH}=$ 53.3 fb

- Check dependence of Higgs mass sensitivity for ZH with \sqrt{s}
- Optimal $\sqrt{s} \approx 216.65 \; {
 m GeV}$
- Roughly nominal + 0.5 GeV (same as WW)
- Statistical sensitivity factor, 280 MeV/ $\sqrt{\rm fb}$, is ten times less precise (cf 29 MeV/ $\sqrt{\rm fb}$).
- Substantial integrated luminosity needed to target 25 MeV and below.

For -80%(L) e^- , +30%(R) e^+

Check $e^+e^- \rightarrow \nu_e \overline{\nu}_e H$

Process has contributions from ZH and WW-fusion. WW-fusion contribution dilutes $M_{\rm H}$ sensitivity significantly. (1.58 GeV/ $\sqrt{\rm fb}$ cf 1.08 GeV/ $\sqrt{\rm fb}$ for $e^+e^- \rightarrow \nu_\mu \overline{\nu}_\mu {\rm H})$

[Initial indication: $e^+e^- \to e^+e^- H$ is ZH-like with no significant dilution from ZZ fusion]

Separating ZH from WW-fusion

- There is scope to use kinematic cuts to reduce WW-fusion contribution and/or categorize events as more or less ZH-like recuperating some of the lost sensitivity.
- It may also be feasible by kinematic cuts/criteria to increase the slope of σ vs $M_{\rm H}$ in some of the channels. (suppressing ISR, mass cuts on the Z and the H candidates etc.)
- NB. So far no considerations at all about background contributions NOR on event selection efficiency. Study assumes 100% efficiency for all channels, and no background.

Higgs Sensitivity Numbers from Threshold Cross-section

For various beam polarization configurations. For ZH, beam polarization is of some use.

Mass Sensitivities	$(\sqrt{s} = 216.5)$	GeV, $M_{\rm H} =$	125.0 GeV)	
--------------------	----------------------	--------------------	------------	--

Setting	α_{HZ} [MeV/ $\sqrt{\text{fb}}$]	$\Delta M_{ m H}$ [MeV] (50 fb ⁻¹)	$\Delta M_{ m H}$ [MeV] (0.5 ab ⁻¹)
-80, +30	279	39.5	12.5
-90, +60	250	35.3	11.2
-80, +60	255	36.1	11.4
-90, +30	268	37.9	12.0
+80, -30	342	48.4	15.3
-80, -30	366	51.7	16.4
+80, +30	422	59.7	18.9
-80, 0	310	43.9	13.9
+80, 0	376	53.2	16.8
0,0	341	48.2	15.2
-100, +100	218	30.8	9.8
+100, -100	272	38.5	12.2

NB. Signal statistical error only. 100% efficiency, no background.

If you agree that this is of some interest, need some estimate of backgrounds, to clarify feasibility. Clearly need more channel-by-channel event selection procedure to keep backgrounds under control.

Note that running at threshold is likely not so attractive for other measurements

. . . .

Direct Reconstruction. LHC 4-lepton mass

 $\sigma_M \approx 2.0 \text{ GeV}$

Direct Reconstruction. ILC 4-lepton mass

ECM=250 GeV. nnH. H to 4-I

 $\sigma_M \approx 0.19 \text{ GeV}$

Estimated using PYTHIA8 events including FSR. Assumes tracking-like momentum resolution for electrons and muons. ECAL-like resolution for photons. Possibly OK for $\mu\mu\mu\mu$, likely underestimate for $ee\mu\mu$ and eeee.

Numerology

LHC cross-sections are substantial.

- ggFusion (8 TeV) = 21 pb
- ggFusion (13 TeV) = 49 pb
- ggFusion (14 TeV) = 55 pb.

acceptance*efficiency modest - more so (I think) at 13 TeV. Backgrounds often substantial (especially $\gamma\gamma)$

Generated Higgs events both with Whizard and Pythia8. 4-vector smearing based on ILD type tracker, ECAL, HCAL and PFA resolutions. Pythia8 samples include FSR (final-state radiation).

Most promising channels appear to be Higgs decays to $\mu^+\mu^-$ and Higgs to 4 leptons.

The 2-body decay has higher momenta (worse resolution). Four-leptons have lower momenta (better resolution). Following are Whizard samples with NO FSR.

Simulations with FSR

WW-fusion events with Pythia8. These include FSR (final-state radiation). ISR photons are flagged at "truth level" and not included in the mass estimation. Most promising channels appear to be Higgs decays to $\mu^+\mu^-$ and Higgs to 4 leptons.

The 2-body decay has higher momenta (worse resolution). Four-leptons have lower momenta (better resolution). But more leptons so more FSR. Following are $\mu^+\mu^-$ and $\mu^+\mu^-\mu^+\mu^-$. Better ECAL resolution would help ... Mass resolutions estimated from Voigtian fit.

\sqrt{s} dependence appears modest

BRs, mass resolution estimates, ΔM guesstimates

Assume 1M produced (and detected) Higgs particles for ILC with negligible background.

Mass Uncertainty Prospects

Decay Mode	BR	LHC σ_M [GeV]	σ_M [GeV]	$\Delta M_{ m H}$ [MeV]
bb	0.5824	Х	3.1	(4.1)
сс	0.0289	Х	3.1	(18.2)
gg	0.0819	Х	3.1	(10.8)
$\gamma\gamma$	$22.70 imes10^{-4}$	1.6	2.2	46.2
$\mu^+\mu^-$	$2.176 imes10^{-4}$	Х	0.21	14.2
$\mu^+\mu^-\mu^+\mu^-$	$3.249 imes10^{-5}$	1.7	0.17	29.8
$e^+e^-\mu^+\mu^-$	$5.897 imes10^{-5}$	2.3	(0.19)	24.7
$e^+e^-e^+e^-$	$3.254 imes10^{-5}$	2.8	(0.22)	38.6
Others		Х		

Averaging the four leptonic channels one gets an overall statistical uncertainty of 10.9 MeV.

Threshold

- Threshold Cross-Section Method Statistical Sensitivity Factor is 280 MeV.
- $\bullet\,$ Higgs mass uncertainties from threshold of 50 MeV or less will likely need at least 50 fb^{-1}.
- Need to dedicate lots of luminosity to be competitive with recoil mass etc.
- Firm conclusions needs more attention to backgrounds.

Direct Reconstruction

- Direct reconstruction of the Higgs mass in "golden channels" looks to be very competitive with LHC and other ILC methods. One single event can give a mass resolution better than the current world average.
- This deserves more study with full simulation.
- Electron reconstruction (tracking) needs more attention.
- ECAL energy resolution is an issue for FSR reconstruction.

Backup Slides