CP-violating top quark couplings at future linear e⁺e⁻ colliders

ILD Analysis/Software Meeting 19/07/2017

W. Bernreuther, L. Chen, **I.García**, M. Perelló, R. Poeschl, F. Richard, E. Ros, M. Vos

- CP-violating top quark couplings
- Optimal CP-odd observables
- Full simulation
- Systematic uncertainties
- Prospects for CP-violating form factors

Conclusions

Top quark electroweak couplings

- New physics may modify the electro-weak **t**tX vertex described in the SM
- e+e⁻ colliders allow to probe these vertices directly. The leading-order process e+e⁻ → tt goes directly through the ttZ and ttγ vertices

• A parametrisation of the tTX vertex for on-shell t and T and off-shell γ , Z is:

$$\Gamma^{ttX}_{\mu}(k^2) = -ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) + \frac{\sigma_{\mu\nu}}{2m_t}k^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$$

Top quark electroweak couplings

CP-conserving couplings

Top quark electroweak couplings

CP-conserving couplings

CP-violation: $e^+e^- \rightarrow tt$

- CP-violating couplings can have abortive parts, i.e., imaginary parts, then
- 4 CP-violating form factors can be extracted.

$$\operatorname{Re}F_{2A}^{\gamma,Z}(s) \qquad \operatorname{Im}F_{2A}^{\gamma,Z}(s)$$

• Electric dipole form factor (EDF) and a weak dipole form factor (WDF)

$$d_t^X(s) = -\frac{e}{2m_t} F_{2A}^X(s), \quad X = \gamma, Z$$

F^x_{2A} are zero at tree level in the SM

- Sizeable CP-violting effects involving top quarks may be observed in SM extensions, in particular we consider the 2HDM and MSSM
- The CP-violating form factors in the t → Wb decay amplitude are very small and of no further interest to us here

CP-violation in SM extensions

• Within the 2HDM the real and imaginary part of the top-quark electric dipole form factor

<u></u>

0.006

 F_{2A}^{V} can be as large as ~ 0.01 in magnitude near the troduction threshold, taking into account the present constraints into the present constraints in

 Within the MSSM the top-quark EDF and WDF are smaller, with maximum values compatible with current experimental constraints below 10⁻³

 $|\text{Re } F_{2A}^{\gamma}|, |\text{Re } F_{2A}^{Z}| < 10^{-3}, |\text{Im } F_{2A}^{\gamma}|, |\text{Im } F_{2A}^{Z}| < 10^{-4} \text{ for } \sqrt{s} \lesssim 500 \text{ GeV}$

Зe

Optimal CP-odd observables

 $e^+(\mathbf{p}_+, P_{e^+}) + e^-(\mathbf{p}_-, P_{e^-}) \rightarrow t(\mathbf{k}_t) + \overline{t}(\mathbf{k}_{\overline{t}})$

The **CP-violating effects** in $e^+e^- \rightarrow t\bar{t}$ manifest themselves in specific **top-spin** effects, namely **CP-odd top spin-momentum correlations and tt** spin correlations.

Lepton+jets final state: The charged lepton is the best analyzer of the top spin

$$t \ \overline{t} \rightarrow \ell^+(\mathbf{q}_+) + \nu_\ell + b + \overline{X}_{had}(\mathbf{q}_{\overline{X}})$$
$$t \ \overline{t} \rightarrow X_{had}(\mathbf{q}_X) + \ell^-(\mathbf{q}_-) + \overline{\nu}_\ell + \overline{b}$$

Optimal CP-odd observables

 CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$\mathcal{O}_{+}^{Re} = (\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}) \cdot \hat{\mathbf{p}}_{+},$$

$$\mathcal{O}_{+}^{Im} = -[1 + (\frac{\sqrt{s}}{2m_{t}} - 1)(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+})^{2}]\hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}} + \frac{\sqrt{s}}{2m_{t}}\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+}$$

- The corresponding observables O- are defined to be the CP image of O+
- The way to extract the CP-violating form factors is to construct asymmetries sensitive to CP-violation effects, as the difference of the expectation values of O+ and O-

$$\mathcal{A}^{Re} = \langle \mathcal{O}^{Re}_+ \rangle - \langle \mathcal{O}^{Re}_- \rangle = c_\gamma(s) \operatorname{Re} F_{2A}^\gamma + c_Z(s) \operatorname{Re} F_{2A}^Z$$

$$\mathcal{A}^{Im} = \langle \mathcal{O}_{+}^{Im} \rangle - \langle \mathcal{O}_{-}^{Im} \rangle = \tilde{c}_{\gamma}(s) \mathrm{Im} F_{2A}^{\gamma} + \tilde{c}_{Z}(s) \mathrm{Im} F_{2A}^{Z}$$

$$\begin{array}{c} \mathcal{A}_{\gamma,Z}^{Re} \hspace{0.1cm} \overset{\mathsf{L}}{} \hspace{0.1cm} \mathcal{A}_{\gamma,Z}^{Re} \end{array} \\ \mathcal{A}_{\gamma,Z}^{Im} \hspace{0.1cm} \overset{\mathsf{R}}{} \hspace{0.1cm} \mathcal{A}_{\gamma,Z}^{Im} \overset{\mathsf{R}}{} \end{array}$$

Coefficients vs √s

Coefficients $c_{\gamma}(s)$ and cZ(s) depend on the e- and e+ polarizations -> disentangle contributions of the CP-violating photon and Z vertices

The sensitivity of A_{Re}/A_{Im} to F_{2A} increases strongly with the c.o.m. energy

$$\mathcal{A}^{Re} = \langle \mathcal{O}^{Re}_{+} \rangle - \langle \mathcal{O}^{Re}_{-} \rangle = c_{\gamma}(s) \operatorname{Re} F_{2A}^{\gamma} + c_{Z}(s) \operatorname{Re} F_{2A}^{Z}$$
$$\mathcal{A}^{Im} = \langle \mathcal{O}^{Im}_{+} \rangle - \langle \mathcal{O}^{Im}_{-} \rangle = \tilde{c}_{\gamma}(s) \operatorname{Im} F_{2A}^{\gamma} + \tilde{c}_{Z}(s) \operatorname{Im} F_{2A}^{Z}$$

$$P_{e^-} = -1$$
, $P_{e^+} = +1$

$$P_{e^-} = +1, P_{e^+} = -1$$

c.m. energy \sqrt{s} [GeV]	$c_{\gamma}(s)$	$c_Z(s)$	$\tilde{c}_{\gamma}(s)$	$\tilde{c}_{Z}(s)$
380	0.245	0.173	0.232	0.164
500	0.607	0.418	0.512	0.352
1000	1.714	1.151	1.464	0.983
1400	2.514	1.681	2.528	1.691
3000	5.589	3.725	10.190	6.791

c.m. energy \sqrt{s} [GeV]	$c_{\gamma}(s)$	$c_Z(s)$	$\tilde{c}_{\gamma}(s)$	$\tilde{c}_Z(s)$
380	-0.381	0.217	0.362	-0.206
500	-0.903	0.500	0.761	-0.422
1000	-2.437	1.316	2.081	-1.124
1400	-3.549	1.909	3.569	-1.920
3000	-7.845	4.205	14.302	-7.667

Thanks to Bernreuther

Simulation samples (6f -> lepton+jets)

Full simulation

ILC@500GeV (ILD detector)

500fb⁻¹, P(e-)=∓80%, P(e+)=∓30%

ILC LumiUp 4ab-1

CLIC@380GeV (CLIC_ILD detector)

500fb⁻¹, P(e-)=∓80%

Loose timing cuts

CLIC@1.4TeV (CLIC_ILD detector) -> Still preliminary

1.5ab⁻¹, P(e-)=∓80%

Tight timing cuts,

Efficiency inputs from top tagging studies

Fast Simulation

CLIC@3TeV

3ab⁻¹, P(e-)=∓80%

Extrapolate numbers from low-energy stages results

Full simulation: CLIC@380GeV

- Distributions are centered at zero
- **Differences** between reconstructed and generated events are **very small**.
- Any distortions in the reconstructed distributions are expected to cancel in the asymmetries A_{Re} and A_{Im}

• Asymmetries are compatible with zero within the statistical error

Systematic uncertainties

source	380 GeV	$500 {\rm GeV}$	3 TeV
machine parameters (bias)	-	-	-
machine parameters (non-linearity)	<< 1%	<< 1%	<< 1%
experimental (bias)	< 0.005	< 0.005	< 0.005
exp. acceptance (linearity)	+3%	+5%	+10%
exp. reconstruction (linearity)	-5%	-5%	-15%
theory (bias)	<< 0.001	<< 0.001	<< 0.001
theory (linearity)	$\pm 2\%$	$\pm~0.9\%$	-

Bias: upper limit Linearity: expected relative modification

- The SM values for A_{Re} and A_{Im} are 0 and the detector response is symmetric (equal for t and t)
- The uncertainties of machine parameters have a negligible effect on the results. Only the determination of P(e-) and P(e+) at the 10⁻³ level (as envisaged in the ILC TDR)
- Distortions and migrations on the distributions O+ and O- don't generate a non-zero asymmetry at least not at the level of 0.005
- Parton-level study: The selection tends to enhance the reconstructed asymmetry while the migration and resolution dilute it. This effect is particularly pronounced at 3TeV.
- Theory uncertainties are taken as the NLO SM corrections the tt production and decay including EDF and WDF
- Our study has not found any sources of systematic uncertainty that yield a spurious asymmetry when the true asymmetry is zero

Prospects for CP-violating form factors

- The measurements at hadron colliders are expected to be considerably less precise than those that can be made at lepton colliders
- Nominal ILC and the CLIC low-energy stages have a very similar sensitivity to these form factors, reaching limits of IF_{2A}^y I<0.01 for the EDF
- Assuming that systematic uncertainties can be controlled to the required level, a luminosity upgrade of both machines may bring a further improvement

Conclusions

• Paper draft ready for circulation

- The CP-violating top-quark form factors F_{2A}^{y,Z}, whose static limits are the electric and weak dipole moment of the top quark can be as large as 0.01 in magnitude in a viable 2HDM
- Asymmetries A_{Re} and A_{Im} expected to be robust against ambiguities and good control over experimental and theoretical systematic uncertainties
- The sensitivity of a future e+e- collider to CP-violating dipole form factors of the top quark exceeds that of the complete LHC programme by an order of magnitude and that of the FCChh by a factor four

Conclusions

• Paper draft ready for circulation

- The CP-violating top-quark form factors F_{2A}γ,^z, whose static limits are the electric and weak dipole moment of the top quark can be as large as 0.01 in magnitude in a viable 2HDM
- Asymmetries A_{Re} and A_{Im} expected to be robust against ambiguities and good control over experimental and theoretical systematic uncertainties
- The sensitivity of a future e+e- collider to CP-violating dipole form factors of the top quark exceeds that of the complete LHC programme by an order of magnitude and that of the FCChh by a factor four

THANKS FOR YOUR ATTENTION

Prospects for CP-violating form factors

	ReF2Agamma	ReF2AZ	ImF2Agamma	ImF2AZ
CLIC@380 GeV	0,011	0,014	0,010	0,018
CLIC@1.4 teV	0,002	0,002	0,006	0,012
CLIC@3 teV (1/2:1/2)	0,002	0,002	0,003	0,006
CLIC@3 teV (1/3:2/3)	0,002	0,002	0,003	0,007
CLIC@3 teV (2/3:1/3)	0,002	0,003	0,004	0,007
ILC@500 GeV	0,004	0,005	0,004	0,007
ILC-LumiUP@500 GeV	0,0014	0,0017	0,0014	0,002

Full simulation: ILC@500GeV

Full simulation: CLIC@1.4TeV

Prospects for CP-violating form factors

		D -7		· -7	_
Quantity	Re F_{2A}^{γ}	Re $F_{2A}^{\mathbb{Z}}$	Im F_{2A}^{γ}	Im F_{2A}^Z	The 68% C.L. limits on $F_{2A}Z$ and $F_{2A}\gamma$
SM value at tree level	0	0	0	0	The 06% C.L. minus on Γ_{2A} and Γ_{2A} .
Prospects derived in this	s study:				
CLIC low-energy stage (\sqrt{s}	= 380 Ge	$V, 500 \text{ fb}^{-1}$	$^{-1})$		
CLIC380	0.011	0.014	0.010	0.018	A 0.4 Birman et al. 1605.02679
ILC nominal operation (\sqrt{s}	= 500 Ge	V, 500 fb	$^{-1})$		
ILC500	0.004	0.005	0.004	0.007	-
ILC Luminosity Upgrade ($_{\mathbf{V}}$	$\sqrt{s} = 500$ (GeV, 4 ab	$^{-1})$		0.2 ATLAS 2017 1702.08309
ILC500LumiUp	0.0014	0.0017	0.0014	0.002	HL-LHC
CLIC high energy $(\sqrt{s} = 3)$	$\overline{\text{TeV}, 3 \text{ ab}}$	-1)			
CLIC3000 (fast simulation)	0.002	0.002	0.003	0.006	Bouzas et al.
Previous studies for lept	on collid	ers:			O 1308.5634
Aguilar et al. [81] (e^+e^-, \sqrt{s})	$\overline{s} = 500 \text{ G}$	eV, 500 ft	(-1)		
TESLA	0.007	0.008	0.008	0.010	
Prospects for hadron col	liders:				-0.2
Baur et al. $[75, 76]$ (pp, 3 at	o^{-1} at 14 '	TeV)			=0.2
HL-LHC	0.12	0.25	0.12	0.25	-
Röntsch & Schulze [77] (pp,	$3 \text{ ab}^{-1} \text{ at}$	14 TeV)			-
HL-LHC	-	0.16	-	-	
Mangano et al. [79] (FCChh	study, pp	$b, 3 ab^{-1}$	at 13 TeV	()	-0.4 -0.2 0 0.2 0.4
HL-LHC	-	0.16	-	-	ΓZ
Mangano et al. [79] (FCChh	study, pp	$b, 3 ab^{-1}$	at 100 Te	V)	۲ ₂ А
FCChh	-	0.04	-	-	
Bouzas et al. [80] (LHeC, ep	$, 100 \text{ fb}^{-1}$	with E_e	= 140 Ge	eV)	
LHeC	0.1	-	-		