CP-violating top quark couplings at future linear $\mathrm{e}^{+} \mathrm{e}^{-}$colliders

ILD Analysis/Software Meeting 19/07/2017

RNUHAACHEN
 UNIVERSITY

W. Bernreuther, L. Chen, I.García, M. Perelló, R. Poeschl, F. Richard, E. Ros, M. Vos

Outline

- CP-violating top quark couplings
- Optimal CP-odd observables
- Full simulation
- Systematic uncertainties
- Prospects for CP-violating form factors
- Conclusions

Top quark electroweak couplings

- New physics may modify the electro-weak $\overline{\mathbf{t t}} \mathbf{X}$ vertex described in the SM
- $\mathbf{e}^{+} \mathbf{e}^{-}$colliders allow to probe these vertices directly. The leading-order process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \overline{\mathrm{tt}}$ goes directly through the $\overline{\mathbf{t} Z} \mathbf{Z}$ and $\overline{\mathrm{t}} \boldsymbol{\gamma} \boldsymbol{\gamma}$ vertices

- $X=Z, \gamma$
- $V=$ Vector coupling
- A = Axial coupling
- A parametrisation of the $t \bar{t} X$ vertex for on-shell t and \bar{t} and off-shell γ, Z is:

$$
\Gamma_{\mu}^{t t X}\left(k^{2}\right)=-i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)+\frac{\sigma_{\mu \nu}}{2 m_{t}} k^{\nu}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}
$$

Top quark electroweak couplings

Eur. Phys. J. C (2015) 75:512 DOI 10.1140/epjc/s10052-015-3746-5

Future e+e- colliders can measure CP-conserving top quark electroweak couplings with a precision that exceeds that of the HL-LHC

$$
\Gamma_{\mu}^{t t X}\left(k^{2}\right)=-i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)+\frac{\sigma_{\mu \nu}}{2 m_{t}} k^{\nu}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}
$$

CP-conserving couplings

Top quark electroweak couplings

Eur. Phys. J. C (2015) 75:512 DOI 10.1140/epjc/s10052-015-3746-5

Future e+e- colliders can measure CP-conserving top quark electroweak couplings with a precision that exceeds that of the HL-LHC

CP-violating couplings

$$
\Gamma_{\mu}^{t t X}\left(k^{2}\right)=-i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)+\frac{\sigma_{\mu \nu}}{2 m_{t}} k^{\nu}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right\}\right.
$$

CP-conserving couplings

CP-violation: $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}$

- CP-violating couplings can have abortive parts, i.e., imaginary parts, then
- 4 CP-violating form factors can be extracted.

$$
\operatorname{Re} F_{2 A}^{\gamma, Z}(s) \quad \operatorname{Im} F_{2 A}^{\gamma, Z}(s)
$$

- Electric dipole form factor (EDF) and a weak dipole form factor (WDF)

$$
d_{t}^{X}(s)=-\frac{e}{2 m_{t}} F_{2 A}^{X}(s), \quad X=\gamma, Z
$$

$\mathrm{FX}_{2 \mathrm{~A}}$ are zero at tree level in the SM

- Sizeable CP-violting effects involving top quarks may be observed in SM extensions, in particular we consider the 2HDM and MSSM
- The CP-violating form factors in the $\mathbf{t} \boldsymbol{\rightarrow} \mathbf{W b}$ decay amplitude are very small and of no further interest to us here

CP-violation in SM extensions

- Within the 2HDM the real and imaginary part of the top-quark electric dipole form factor $F_{2 A}{ }^{\mathrm{y}}$ can be as large as ~ 0.01 in magnitude near the tt production threshold, taking into account the present constraints from LHC data

- Within the MSSM the top-quark EDF and WDF are smaller, with maximum values compatible with current experimental constraints below 10-3

$$
\left|\operatorname{Re} F_{2 A}^{\gamma}\right|,\left|\operatorname{Re} F_{2 A}^{Z}\right|<10^{-3}, \quad\left|\operatorname{Im} F_{2 A}^{\gamma}\right|,\left|\operatorname{Im} F_{2 A}^{Z}\right|<10^{-4} \quad \text { for } \sqrt{s} \lesssim 500 \mathrm{GeV}
$$

Optimal CP-odd observables

$$
e^{+}\left(\mathbf{p}_{+}, P_{e^{+}}\right)+e^{-}\left(\mathbf{p}_{-}, P_{e^{-}}\right) \quad \rightarrow \quad t\left(\mathbf{k}_{t}\right)+\bar{t}\left(\mathbf{k}_{\bar{t}}\right)
$$

The CP-violating effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}^{-}$manifest themselves in specific top-spin effects, namely CP-odd top spin-momentum correlations and tt ${ }^{-}$spin correlations.

Lepton+jets final state: The charged lepton is the best analyzer of the top spin

$$
\begin{array}{rll}
t \bar{t} & \rightarrow & \ell^{+}\left(\mathbf{q}_{+}\right)+\nu_{\ell}+b+\bar{X}_{\text {had }}\left(\mathbf{q}_{\bar{X}}\right) \\
t \bar{t} & \rightarrow & X_{\text {had }}\left(\mathbf{q}_{X}\right)+\ell^{-}\left(\mathbf{q}_{-}\right)+\bar{\nu}_{\ell}+\bar{b}
\end{array}
$$

Optimal CP-odd observables

- CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$
\begin{aligned}
\mathcal{O}_{+}^{R e} & =\left(\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}\right) \cdot \hat{\mathbf{p}}_{+}, \\
\mathcal{O}_{+}^{I m} & =-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\right)^{2}\right] \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+} .
\end{aligned}
$$

- The corresponding observables $\mathbf{0}^{-}$are defined to be the $\mathbf{C P}$ image of $\mathbf{0}^{+}$
- The way to extract the CP-violating form factors is to construct asymmetries sensitive to CP-violation effects, as the difference of the expectation values of O^{+}and O^{-}

$$
\begin{aligned}
& \mathcal{A}^{R e}=\left\langle\mathcal{O}_{+}^{R e}\right\rangle-\left\langle\mathcal{O}_{-}^{R e}\right\rangle=c_{\gamma}(s) \operatorname{Re} F_{2 A}^{\gamma}+c_{Z}(s) \operatorname{Re} F_{2 A}^{Z} \\
& \mathcal{A}^{I m}=\left\langle\mathcal{O}_{+}^{I m}\right\rangle-\left\langle\mathcal{O}_{-}^{I m}\right\rangle=\tilde{c}_{\gamma}(s) \operatorname{Im} F_{2 A}^{\gamma}+\tilde{c}_{Z}(s) \operatorname{Im} F_{2 A}^{Z}
\end{aligned}
$$

$$
\begin{array}{|ll}
\mathcal{A}_{\gamma, Z}^{R e} & \mathcal{A}_{\gamma, Z}^{R e} \\
\mathcal{A}_{\gamma, Z}^{\mathrm{L}} & \mathcal{A}_{\gamma, Z}^{I{ }^{\mathrm{R}} \mathrm{R}}
\end{array}
$$

Coefficients vs $\sqrt{ } \mathrm{s}$

Coefficients $c_{\gamma}(s)$ and $c Z(s)$ depend on the e- and e+ polarizations -> disentangle contributions of the CP-violating photon and Z vertices

The sensitivity of $A_{\text {Re }} / A_{\text {Im }}$ to $F_{2 A}$ increases strongly with the c.o.m. energy

Thanks to Bernreuther

Simulation samples (6f -> lepton+jets)

Full simulation

ILC@500GeV (ILD detector)
$500 f b^{-1}, P(e-)=\mp 80 \%, P(e+)=\mp 30 \%$
ILC LumiUp 4ab-1
CLIC@380GeV (CLIC_ILD detector)
$500 f \mathrm{fb}^{-1}, \mathrm{P}(\mathrm{e}-)=\mp 80 \%$
Loose timing cuts
CLIC@1.4TeV (CLIC_ILD detector) -> Still preliminary
$1.5 \mathrm{ab}^{-1}, \mathrm{P}(\mathrm{e}-)=\mp 80 \%$
Tight timing cuts,
Efficiency inputs from top tagging studies

Fast Simulation

CLIC@3TeV
$3 a b^{-1}, P(e-)=\mp 80 \%$
Extrapolate numbers from low-energy stages results

Full simulation: CLIC@380GeV

(a) $\mathcal{O}_{+}^{R e}$

(c) $\mathcal{O}_{+}^{I m}$

(b) $\mathcal{O}_{-}^{R e}$

(d) $\mathcal{O}_{-}^{I m}$

polarization	$e_{L}^{-}\left(P_{e^{-}}=-0.8\right)$	$e_{R}^{-}\left(P_{e^{-}}=+0.8\right)$
$\mathcal{A}^{R e}$	-0.00006 ± 0.003	0.0072 ± 0.003
$\mathcal{A}^{I m}$	0.0004 ± 0.003	-0.0019 ± 0.003

- Asymmetries are compatible with zero within the statistical error

Systematic uncertainties

source	380 GeV	500 GeV	3 TeV
machine parameters (bias)	-	-	-
machine parameters (non-linearity)	$\ll 1 \%$	$\ll 1 \%$	$\ll 1 \%$
experimental (bias)	<0.005	<0.005	<0.005
exp. acceptance (linearity)	$+3 \%$	$+5 \%$	$+10 \%$
exp. reconstruction (linearity)	-5%	-5%	-15%
theory (bias)	$\ll 0.001$	$\ll 0.001$	$\ll 0.001$
theory (linearity)	$\pm 2 \%$	$\pm 0.9 \%$	-

Bias: upper limit

Linearity: expected relative modification

- The SM values for $\mathbf{A}_{\mathbf{R e}}$ and $\mathbf{A}_{\mathbf{I m}}$ are $\mathbf{0}$ and the detector response is symmetric (equal for t and t)
- The uncertainties of machine parameters have a negligible effect on the results. Only the determination of $\mathrm{P}(\mathrm{e}-)$ and $\mathrm{P}(\mathrm{e}+)$ at the $\mathbf{1 0}^{\mathbf{- 3}}$ level (as envisaged in the ILC TDR)
- Distortions and migrations on the distributions O+ and O- don't generate a non-zero asymmetry at least not at the level of $\mathbf{0 . 0 0 5}$
- Parton-level study: The selection tends to enhance the reconstructed asymmetry while the migration and resolution dilute it. This effect is particularly pronounced at 3 TeV .
- Theory uncertainties are taken as the NLO SM corrections the tt production and decay including EDF and WDF
- Our study has not found any sources of systematic uncertainty that yield a spurious asymmetry when the true asymmetry is zero

Prospects for CP-violating form factors

- The measurements at hadron colliders are expected to be considerably less precise than those that can be made at lepton colliders
- Nominal ILC and the CLIC low-energy stages have a very similar sensitivity to these form factors, reaching limits of $I F_{2 A} \mathrm{l}<\mathbf{0 . 0 1}$ for the EDF
- Assuming that systematic uncertainties can be controlled to the required level, a luminosity upgrade of both machines may bring a further improvement

Conclusions

- Paper draft ready for circulation
- The CP-violating top-quark form factors $\mathbf{F}_{2 A} \mathbf{r}, \mathbf{Z}$, whose static limits are the electric and weak dipole moment of the top quark can be as large as $\mathbf{0 . 0 1}$ in magnitude in a viable 2HDM
- Asymmetries $\mathbf{A}_{\text {Re }}$ and $\mathbf{A}_{\mathbf{I m}}$ expected to be robust against ambiguities and good control over experimental and theoretical systematic uncertainties
- The sensitivity of a future e+e- collider to CP-violating dipole form factors of the top quark exceeds that of the complete LHC programme by an order of magnitude and that of the FCChh by a factor four

Conclusions

- Paper draft ready for circulation
- The CP-violating top-quark form factors $\mathbf{F}_{2 A} \mathbf{r}, \mathbf{Z}$, whose static limits are the electric and weak dipole moment of the top quark can be as large as $\mathbf{0 . 0 1}$ in magnitude in a viable 2HDM
- Asymmetries $\mathbf{A}_{\text {Re }}$ and $\mathbf{A}_{\mathbf{I m}}$ expected to be robust against ambiguities and good control over experimental and theoretical systematic uncertainties
- The sensitivity of a future e+e- collider to CP-violating dipole form factors of the top quark exceeds that of the complete LHC programme by an order of magnitude and that of the FCChh by a factor four

THANKS FOR YOUR ATTENTION

Prospects for CP-violating form factors

	ReF2Agamma	ReF2AZ	ImF2Agamma	ImF2AZ
CLIC@380 GeV	0,011	0,014	0,010	0,018
CLIC@1.4 teV	0,002	0,002	0,006	0,012
CLIC@3 teV (1/2:1/2)	0,002	0,002	0,003	0,006
CLIC@3 teV (1/3:2/3)	0,002	0,002	0,003	0,007
CLIC@3 teV (2/3:1/3)	0,002	0,003	0,004	0,007
ILC@500 GeV	0,004	0,005	0,004	0,007
ILC-LumiUP@500 GeV	0,0014	0,0017	0,0014	0,002

Full simulation: ILC@500GeV

Full simulation: CLIC@1.4TeV

Prospects for CP-violating form factors

Quantity	$\operatorname{Re} F_{2 A}^{\gamma}$	Re $F_{2 A}^{Z}$	$\operatorname{Im} F_{2 A}^{\gamma}$	$\operatorname{Im} F_{2 A}^{Z}$
SM value at tree level	0	0	0	0
Prospects derived in this study:				
CLIC low-energy stage ($\sqrt{s}=380 \mathrm{GeV}$, $500 \mathrm{fb}^{-1}$)				
CLIC380	0.011	0.014	0.010	0.018
ILC nominal operation ($\sqrt{s}=500 \mathrm{GeV}$, $500 \mathrm{fb}^{-1}$)				
ILC500	0.004	0.005	0.004	0.007
ILC Luminosity Upgrade ($\sqrt{s}=500 \mathrm{GeV}, 4 \mathrm{ab}^{-1}$)				
ILC500LumiUp	0.0014	0.0017	0.0014	0.002
CLIC high energy ($\sqrt{s}=3 \mathrm{TeV}$, $3 \mathrm{ab}^{-1}$)				
CLIC3000 (fast simulation)	0.002	0.002	0.003	0.006
Previous studies for lepton colliders:				
Aguilar et al. [81] ($\left.e^{+} e^{-}, \sqrt{s}=500 \mathrm{GeV}, 500 \mathrm{fb}^{-1}\right)$				
TESLA	0.007	0.008	0.008	0.010
Prospects for hadron colliders:				
Baur et al. [75, 76] (pp, $3 \mathrm{ab}^{-1}$ at 14 TeV)				
HL-LHC	0.12	0.25	0.12	0.2
Röntsch \& Schulze [77] (pp, $3 \mathrm{ab}^{-1}$ at 14 TeV)				
HL-LHC		0.16		
Mangano et al. [79] (FCChh study, pp, $3 \mathrm{ab}^{-1}$ at 13 TeV)				
HL-LHC	-	0.16	-	-
Mangano et al. [79] (FCChh study, pp, $3 \mathrm{ab}^{-1}$ at 100 TeV)				
FCChh		0.04	-	-
Bouzas et al. [80] (LHeC, ep, $100 \mathrm{fb}^{-1}$ with $E_{e}=140 \mathrm{GeV}$)				
LHeC	0.1	-		

The 68% C.L. limits on $\mathrm{F}_{2 \mathrm{~A}} \mathrm{Z}$ and $\mathrm{F}_{2 \mathrm{~A}} \gamma$
Prospects derived in this study:
CLIC low-energy stage ($\sqrt{s}=380 \mathrm{GeV}$, $500 \mathrm{fb}^{-1}$)
CLIC380 $0.011 \quad 0.014 \quad 0.010 \quad 0.018$
ILC nominal operation $\left(\sqrt{s}=500 \mathrm{GeV}\right.$, $\left.500 \mathrm{fb}^{-1}\right)$
$\begin{array}{lllll}\text { ILC500 } & 0.004 & 0.005 & 0.004 & 0.007\end{array}$
ILC Luminosity Upgrade ($\sqrt{s}=500 \mathrm{GeV}, 4 \mathrm{ab}^{-1}$)

Previous studies for lepton colliders:
Aguilar et al. [81] $\left(e^{+} e^{-}, \sqrt{s}=500 \mathrm{GeV}, 500 \mathrm{fb}^{-1}\right)$

Baur et al. [75, 76] (pp, $3 \mathrm{ab}^{-1}$ at 14 TeV)
$\begin{array}{lllll}\text { HL-LHC } & 0.12 & 0.25 & 0.12 & 0.25\end{array}$
Röntsch \& Schulze [77] (pp, $3 \mathrm{ab}^{-1}$ at 14 TeV)
HL-LHC - 0.16
Mangano et al. [79] (FCChh study, pp, $3 \mathrm{ab}^{-1}$ at 13 TeV)
HL-LHC - 0.16
Mangano et al. [79] (FCChh study, pp, $3 \mathrm{ab}^{-1}$ at 100 TeV)

