update of e+e--> vvh analysis

-towards proper inclusion of $\sigma_{w w f x B R(h —>b b) ~ i n t o ~ a ~ g l o b a l ~ f i t ~}^{\text {fin }}$

Junping Tian (U' of Tokyo)
ILD Analysis \& Software Meeting, July 19, 2017

many thanks to discussion with T.Barklow, K.Fujii, J.List
arXiv:1506.07830

$\int \mathscr{L} d t$ at \sqrt{s}	$250 \mathrm{fb}^{-1}$ at 250 GeV		$330 \mathrm{fb}^{-1}$ at 350 GeV		$500 \mathrm{fb}^{-1}$ at 500 GeV		
$P\left(e^{-}, e^{+}\right)$	(-80\%,+30\%)						
production	Zh	$v \bar{v} h$	Zh	$v \bar{v} h$	Zh	$v \bar{v} h$	$t \bar{t} h$
$\Delta \sigma / \sigma$	[39] 2.0%	-	[10,40] 1.6\%	-	3.0	-	-
BR(invis.) [41]	< 0.9\%	-	$<1.2 \%$	-	<2.4\%	-	-
decay	$\Delta(\sigma \cdot B R) /(\sigma \cdot B R)$						
$h \rightarrow b \bar{b}$	1.2\%	10.5\%	1.3\%	1.3\%	1.8\%	0.7\%	28\%
$h \rightarrow c \bar{c}$	8.3\%		9.9\%	13\%	13\%	6.2\%	-
$h \rightarrow g g$	7.0\%	-	7.3\%	8.6\%	11\%	4.1\%	-
$h \rightarrow W W^{*}$	6.4\%	-	6.8\%	5.0\%	9.2\%	2.4\%	-
$h \rightarrow \tau^{+} \tau^{-}$	[42] 3.2%	-	[43] 3.5%	19\%	5.4\%	9.0\%	-
$h \rightarrow Z Z^{*}$	19\%	-	22\%	17\%	25\%	8.2\%	-
$h \rightarrow \gamma \gamma$	34\%	-	34\%	[44] 39%	34\%	[44] 19%	-
$h \rightarrow \mu^{+} \mu^{-}$[45]	72\%	-	76\%	140\%	88\%	72\%	-

correlation was not taken into account (neither interference) in past global fit

(reported on June 7)
new result: $\sigma(\mathrm{vvH})$ from template fit

$$
\chi^{2}=\sum_{i}^{N_{\text {bins }}}\left(N_{i}^{\text {pred }}-N_{i}^{\text {data }}\right)^{2} / \sigma^{2}\left(N_{i}^{\text {pred }}\right)
$$

$$
N_{i}^{\text {pred }}=f_{\mathrm{WW}} N_{\mathrm{WW}, i}^{\prime}+f_{\mathrm{ZH}} N_{\mathrm{ZH}, i}^{\prime}+f_{\mathrm{bgrd}} N_{\mathrm{bgrd}, i}^{\prime \text { tot }}
$$

- background $2 \mathrm{f} / 4 \mathrm{f}$ normalisation can be almost fixed $\rightarrow>0.1 \%$
- $\mathrm{vvH}(\mathrm{ZH})$ normalisation can be constrained by qqH and IIH measurements \rightarrow 1.5\%

$$
\frac{\Delta \sigma_{\nu \nu H}}{\sigma_{\nu \nu H}}=\frac{\Delta N_{W W}^{\prime}}{N_{W W}^{\prime}}=8.1 \%
$$

$\sim 20 \%$ improvement w.r.t. previous result (10.5\%), which is similar with the case that no constraint on $\mathrm{vvH}(\mathrm{ZH})$

real relevant observables

$$
\begin{aligned}
& O_{1}=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b) \times \operatorname{BR}(Z \rightarrow l l) \\
& O_{2}=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b) \times \operatorname{BR}(Z \rightarrow q q) \\
& O_{3}=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b) \times \operatorname{BR}(Z \rightarrow \nu \nu) \\
& O_{4}=\sigma_{W W F} \times \operatorname{BR}(h \rightarrow b b)
\end{aligned}
$$

approach A

$\Delta O_{3}, \Delta O_{4}$, together with correlation ρ_{34} are obtained simultaneously from one analysis for final state vvbb
put them together with independent observables $\mathrm{O}_{1}, \mathrm{O}_{2}$ into a global fit

comments on approach A

technically already feasible in current program
but we have to expand the input tables with more observables, and in principle treat properly parametrization of Z decay

approach A'

assume branching ratios of Z decay are perfectly known (meaning, uncertainties are much smaller than Higgs related observables, e.g. O1, O2, O3, 04 here, which is probably true)
then observables $01, \mathrm{O2}, \mathrm{O} 3$ are just independent measurements of one same observable, let's call it $00=\sigma Z h \times B R(h->b b)$

observables in approach A'

$$
O_{1} \prime=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b)
$$

$$
O_{2} \prime=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b)
$$

$$
O_{3} \prime=\sigma_{Z h} \times \operatorname{BR}(h \rightarrow b b)
$$

$$
O_{4}=\sigma_{W W F} \times \mathrm{BR}(h \rightarrow b b)
$$

comments on approach A'

again, technically already feasible in current program; we add measurement simultaneously 03 (00) and 04 together with their correlation, and repeat adding measurements O1', O2' as same observable O0,
again, we have to expand the input tables for $\sigma Z \mathrm{Z} \times \mathrm{BR}(\mathrm{h}->\mathrm{bb})$

approach B

try to combine O1', O2', O3' and 04 into two observables O0, O4, + correlation 004
(identical to approach A', see next slides)

approach B (what I adopted now)

$$
\begin{aligned}
\chi^{2} & =\chi^{2}\left(O_{3}^{\prime}, O_{4}\right)+\left(\frac{O_{1}^{\prime}-O_{0}^{\text {pre }}}{\Delta O_{1}^{\prime}}\right)^{2}+\left(\frac{O_{2}^{\prime}-O_{0}^{\text {pre }}}{\Delta O_{2}^{\prime}}\right)^{2} \\
& =\chi^{2}\left(O_{0}, O_{4}\right)+\left(\frac{O_{0}-O_{0}^{\text {pre }}}{\Delta O_{1}^{\prime}}\right)^{2}+\left(\frac{O_{0}-O_{0}^{\text {pre }}}{\Delta O_{2}^{\prime}}\right)^{2}
\end{aligned}
$$

x2(O3', O4) is obtained in analysis for final state vvbb (by missing mass distribution); $\Delta 01$ ', $\Delta 02^{\prime}$ are obtained in other two analyses.
minimizing x 2 gives $\Delta \mathrm{OO}, \Delta \mathrm{O} 4, \rho_{04}$ (side remark, $\rho_{04 \ll \rho_{34}}$)
O0, 04 are exactly the ones in current input table, what we need add is ρ_{04} (a minimum change of formalism/code)
at ECM >= 350, ρ_{04} can be neglected (missing masses are sufficiently separated for two channels)

full simulation results

(input results from other analyses)

Ono, et al, Eur. Phys. J. C (2013) 73: 2343
for $\mathbf{m h}=120 \mathrm{GeV}$
$\Delta O_{1}^{\prime} / O_{1}^{\prime}=2.5 \% \quad \Delta O_{2}^{\prime} / O_{2}^{\prime}=1.5 \%$
extrapolated to $\mathbf{m h}=125 \mathrm{GeV}$
$\Delta O_{1}^{\prime} / O_{1}^{\prime}=2.7 \% \quad \Delta O_{2}^{\prime} / O_{2}^{\prime}=1.9 \%$

$$
\sqrt{s}=250 \mathrm{GeV}
$$

$$
\int L \mathrm{~d} t=250 \mathrm{fb}^{-1}
$$

full simulation results

Polarization: $(\mathrm{e}-, \mathrm{e}+)=(-0.8,+0.3)$

$$
\sqrt{s}=250 \mathrm{GeV} \quad \int L \mathrm{~d} t=250 \mathrm{fb}^{-1}
$$

approach \mathbf{A}^{\prime}
$\Delta O_{3}^{\prime} / O_{3}^{\prime}=4.10 \% \quad \Delta O_{4} / O_{4}=11.3 \% \quad \rho_{34}=-74 \%$
approach B
$\Delta O_{0} / O_{0}=1.34 \% \quad \Delta O_{4} / O_{4}=8.10 \% \quad \rho_{04}=-34 \%$

