

ILC cryomodule mechanical work at INFN-Pisa

- Ongoing work
- Near term future
- Manpower summary
- Outlook

Ongoing work (1)

- ASME characterization of components
 - ➤ Vacuum vessel:
- Verifications done:
 - Max allowable pressure.
 - Minimum thickness required for Vessel.
 - Nozzle thickness checks.
 - Calculation of the opening reinforcing areas.
 - > Stresses from static loads :
 - Reactions from supports (local stress and stress from bending moment).
 - Local loads on Post openings.
 - Local loads from lifting brackets.

Ongoing work (2)

- ASME characterization of components
 - The GRP, cooling pipes, cold mass:
 - design pressure checks at the operating temperatures,
 - verification of external loads,
 - **EXPECT COMPLETION BY SEPTEMBER 2006**
 - Follow-up:
 - Calculation maintenance.
 - Critical revision of design:
 - Many specs exceed ASME
 - Worth considering reducing some requirements

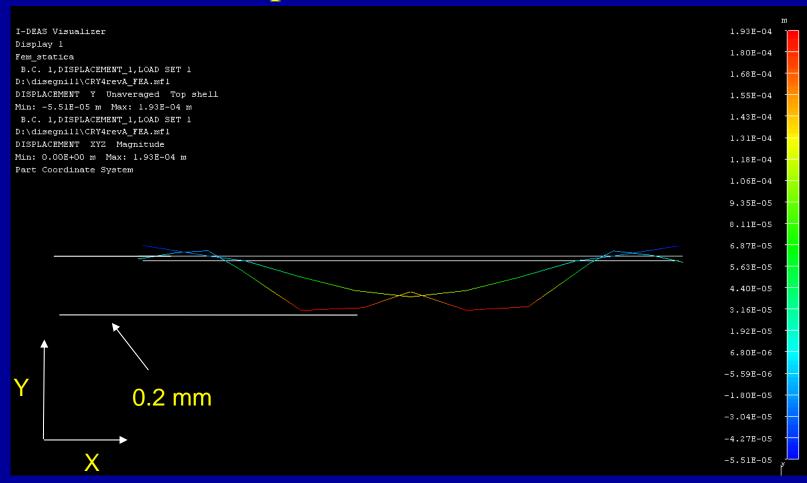
Ongoing work (3)

- **FEM** analyses:
 - ➤ Simple FEM of CRY-4 module using beam elements.
 - Model used to study:
 - vacuum vessel support positions,
 - POST positions,
 - normal modes of vibrations.

FNAL Meeting, July 2006

Basti, Bedeschi, Raffaelli, INFN-Pisa

Ongoing work (4)

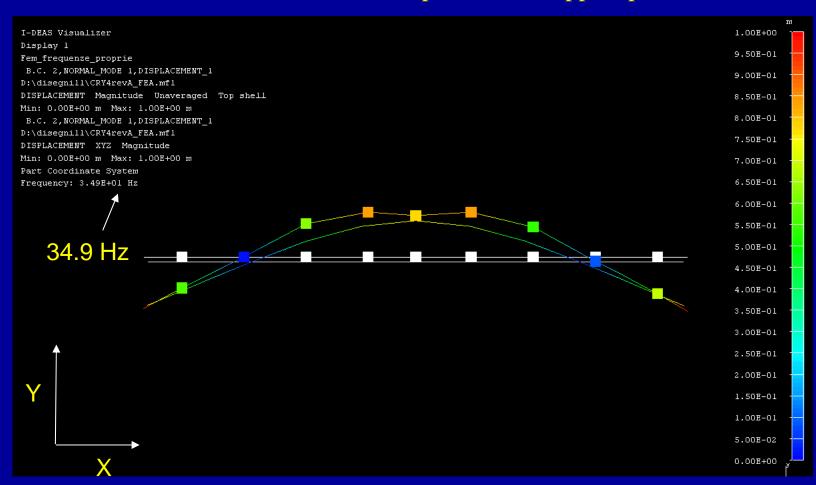

- Optimization of vacuum vessel supports:
 - ➤ Prefer two support isostatic solution max GRP deflection = 0.19 mm

- Optimization of POST position:
 - Find solution consistent with analytical model developed at INFN-Mi.

Example of VV support study Displacements with A/2=3500

Ongoing work (5):

- Normal modes of vibration in chosen configuration:
 - \rightarrow two supports (A/2=3500), POST = 4300 mm


- * We considered two limits cases to model the POST connection between the vacuum vessel and the GRP:
 - ➤ CASE 1) all degrees of freedom fixed between the vacuum vessel nodes and GRP nodes (in the Post positions).
 - ➤ CASE 2) rotation along z axis (perpendicular to vessel axis) free between the vacuum vessel nodes and GRP nodes (in the Post position).

Example of FEM results

Normal Mode -1 (Y-X plane) two support points Case-1

	CASE-1	CASE-2
1	34.9 Hz (Y-X plane)	26.1 Hz (Y-X plane)
2	57.2 Hz (X-Z plane)	30.6 Hz (Y- X plane)
3	61.4 Hz (Y-X plane)	46.4 Hz (Y-X plane)
4	61.8 Hz (X-Z plane)	57.2 Hz (X-Z plane)
5	65.0 Hz (Y-X plane)	60.7 Hz (Y-X plane)
6	71.6 Hz (Y-X plane)	61.8 Hz (X-Z plane)
7	86.6 Hz (X-Z plane)	70.1 Hz (Y-X plane)
8	92.2 Hz (X-Z plane)	86.6 Hz (X-Z plane)
9	92.5 Hz (Y-X plane)	91.0 Hz (Y-X plane)
10	98.0 Hz (X-Z plane)	92.2 Hz (X-Z plane)

Near term future work (1)

- Mechanical model (room temperature)
 - Vacuum vessel + POST + simplified cold mass
 - **Goals:**
 - Experimental verification of FEM models predictions
 - Engineering cable and pipe routing/feed-through
 - Engineering assembly and associated fixtures
 - ➤ Model can be instrumented/inspected
 - Available stress analysis equipment in INFN-Pisa
 - Model can be easily modified to test project modifications
 - ➤ Should be accessible to all ILC collaborators

Near term future work (2)

- Specific cryomodule R&D:
 - **Posts.**
 - Vacuum flanges between cavities:
 - Decrease space between cavities.
 - Study "Ultraflex" low insertion force o-ring.
 - Room/LN temperature tests in Pisa LHe in Milan

Near term future work (3)

- Participation to cryomodule fabrication at Zanon (with INFN-Milan)
 - Current and future productions
- Participation to cryomodule engineering drawings:
 - Possible parts of major Pisa involvement:
 - Posts.
 - Includes coupling to the GRP
 - Vacuum vessel.
 - Thermal shields with associated pipes.
 - Could include some pipe size calculations
 - Parts of the GRP to be defined.
 - New cavity flange if R&D successful.

Manpower

- A. Basti: project engineer
- F. Raffaelli: consultant
- G. Martinelli, S. Linari, A. Sukhanova: engineers
- S. Bianucci: draftsman
 - Work in progress to procure additional engineering support.

Outlook

- Plan strong participation to cryomodule engineering, design and industrial production.
- Expect major INFN funding for a type 4 cryomodule in 2007 to be produced in Italy.
- Expect INFN involvement in cryomodule production to grow in following years.