Detector Optimisation and Physics

ILD Meeting Oshu City, Sept. 7,2014 J.List

Goals of further Simulation Studies

 Open physics case questions High-level perspective Ultimate luminosity requirements Polarisation sharing Not yet (fully) demonstrated key measurements => interplay with running strategy & accelerator & detectors 	Detector issues not yet studied (sufficiently) - Calibration & alignment => need for Z pole running? => machine implications! - Systematic uncertainties - PID, low momentum particles
Detector cost justification (reduction?) - shrink overall size - Ecal technology - Why a TPC? 	 Change requests from machine L* = 4.4 m -> 4.0 m ? Crossing angle 14mrad -> 10mrad ? => cf Yokoya-San's presentation & MDI session

What we need to agree on

- New detector models
 - Cheaper
 - $L^* = 4m?$
- Detector level performance benchmarks
 - incl. sofar uncovered aspects
- Physics level performance benchmarks
 - Incl. systematic uncertainties

- Important physics case questions
 - To be answered independently of detector optimisation
- Required "helper studies":
 - Calibration
 - Alignment
 - Systematic uncertainties

Physics Case - Overview

This is the key for realising the ILC! Need answers on the same topics, but from a higher-level perspective

- Higgs
 - Mass (250 GeV ... ->)
 - Couplings to W,Z,f (250 GeV >)
 - Self-coupling (500 GeV ->)
 - CP properties (250 GeV ->)
- **Top**
 - Mass (350 GeV)
 - EW couplings (400 GeV ->)
 - ttH (500 GeV ->

- Direct BSM (250 GeV... ->)
 - WIMPs in mono-photons
 - Natural SUSY: light Higgsinos
 - Low ΔM new particles
 - ...
- Z
 - ALR (91 GeV)
 - Mass? (91 GeV)
- W
 - Mass (500 GeV ->)
 - TGCs, QGCs (250->

Detailled detector requirements of these topics cf also talks at ILD meeting 2013 in Krakow!

Distributing Luminosity & Polarisation

- Sofar, we "overbooked" run time since every analysis picked just their favourite energy & polarisation configuration
- Need to know for *every* analysis:

Luminosity sharing between helicities:

- What is the optimal sharing between (-+,+-,++,--)?
- What is the "price" for deviating from this?
 - -> results for all 4 settings

At which integrated luminosity do we become systematics limited?

- Theory
- Parametric
- Experimentally
 -> will need dedicated studies!

Taking a "higher-level perspective" Example: Higgs Mass

How precisely do we need m_{H} ?

- $\Gamma(H->X) \sim g_X^2 * \text{ phase space}$
- Phase space depends on m_H especially for H->WW* / ZZ*
- Current estimate: δm_H = 200 MeV
 => parametric uncertainty of
 2.2% on Γ(H->WW*)
 2.5% on Γ(H->ZZ*)
- Acceptable parametric uncertainty?

δΓ ^{para}	δm _H	Lumi [fb ⁻¹]	
1%	80 MeV	75	
0.5%	40 MeV	300	
0.25%	20 MeV	1200 (!!!)	

If <0.5% required, investigate

- Contribution from leptonic recoil at higher ECM
 Tracking performance III
 - -> tracking performance!!!
 - Kinematic reconstruction H->bb, H->WW ??

Uncovered Physics Case Studies Ex: Higgs CP properties

CP properties of Higgs-fermion coupling from H-> $\tau^+\tau^-$

- Exploit ττ spin correlation, eg τ->ρν, πν, a₁ν.. other τ->lvv
- Very hard at LHC, theory study $\delta \phi_{\tau} = 14^{\circ}$ for 300 fb^{-1}
- ILC: Last experimental study (SimDet): Desch, Was, Worek '03
- Recent theory study: S.Berge etal, Phys.Lett. B727 (2013) 488-495:

 $\delta φ_{\tau}$ = 2.8° for 1ab⁻¹ @ 250 GeV

To study:

- Other ECM?
- Pair & γγ backgrounds
- π^0 reconstruction
- Exclusive τ decay reconstruction
- Impact parameter resolution
- Momentum resolution

Not fully demonstrated Physics Case Ex: low ΔM New Physics

- unique discovery potential for the ILC, complementary to LHC
- Famous example: natural SUSY -> light, neardegenerate Higgsinos
- Feasibility study in SGV showed ability to constrain multi-TeV SUSY-parameters
 - **Requires:**
 - stand-alone Si tracking with low number of fakes
 - PID for < 2 GeV , vertexing / impact parameter, π^0 reconstruction
 - Excellent hermeticity and γ energy resolution

- But short cutting:
 - Particle IP
 - γγ->hadrons overlay
 - Fake tracks from pairs

Second Example– Dark Matter

- unique discovery potential for the ILC, complementary to LHC
- Reinterpretation of (pre-)Lol study
- Detector & machine issues:
 - Bhabha suppression
 => hermeticity
 => L* / crossing angle
 - Photon energy resolution
 - Fwd tracking
 - Fake tracks, γγ->hadrons

- dP, dE_{CM}, dL/dE_{CM}
- Fake tracks
- Photon efficiciency, energy scale

From Physics to Detector Optimisation

- 1-1 relation between physics measurement and one specific detector performance aspect is *rare*
- For precision measurements, control of systematics might pose the most critical detector requirements [eg top threshold mass: control of dL/dE_{CM}-> Bhabha's -> LumiCal, fwd tracking, ...]

=> optimise not just for statistical uncertainties, but also for calibration & control of systematics!

• Eg: Jet energy scale uncertainty vs jet energy resolution

-> scale calibration for individual particles, neutral hadron fraction, gluon splitting, fragmentation, ...

Detector Optimisation and E_{CM} - what will be replaced when?

- Vertex detector:
 - exchange "frequently"?
 - Can optimise for initial energy (250...350 GeV)
 - Assume different configurations for 500 GeV and 1 TeV physics studies?
- SIT, FTD:
 - replace for 1 TeV upgrade?
 - Optimise for 500 GeV
- Same for TPC readout technology, ECal / Hcal granularity?

- Coil radius:
 - Never ever?
 - Optimise for 1 TeV
 TPC radius, ECal, HCal depth
- Same for TPC length
- LumiCal, LHCal, BeamCal?
- SET?

For Physics Case: one detector simulation model sufficient in view of limited person power

Physics & Systematic Uncertainties

- We know the *statistical* uncertainties for many important physics studies
 - -> fine for > O (few percent) precision </
- In many cases, we aim far beyond: eg δ^{stat} BR (H->bb) < 1%
- Here, our purely statistical uncertainties are *not convincing!*
 - need to include systematics in physics case and detector
 - **optimisation**, both theoretical/parametric and experimental, eg:
 - Momentum / energy scales
 - Flavour tag, gluon splitting -> bb / cc, ...
 - Parton Shower: currently LO ME + PS this is not state of the art! & Fragmentation, hadronisation, neutral hadron fraction, ...
 - Luminosity, E_{CM}, Polarisation, but also dL/dE_{CM}

Need appropriate simulation & reconstruction tools, and "control benchmarks", eg determination of dL/dE_{CM}

Calibration & Alignment

- Which precisions can be achieved?
 - Tracker momentum scale?
 - Calorimeter scales for different (neutral) particles
 - Jet energy scale
 - L, E, P incl. dL/dE
 - ..
- And on which time scales?
 - Ultimate long-term?
 - For one push-pull period?

input for estimation of systematic uncertainties!

- How much Z pole data do we need for that?
- And how often?
 - Once a year?
 - After every push-pull?

requirement for accelerator design!

Optimisation benchmarks

Detector Level

- Hermeticity:
 - for high E (>90%E_{beam}?) e^{+-}/γ
 - for "normal" e, μ , γ , π , n
- Calorimeters:
 - Jet energy resolution, including 5 < E_{iet} < 50 GeV
 - Photon energy & angle resolution
 - Bhabha reconstruction
- Tracking system:
 - Efficiency, fake rate
 - $\sigma(1/p_t), \sigma_{IP}$
 - Vertex efficiency, resolution
 - Jet charge
 - Flavour tag

- Low momentum particles (p_t = 0.1....2 GeV):
 - Tracking efficiency, $\sigma(1/p_t)$, σ_{IP}
 - Calorimeter detection efficiency
- Particle ID (dE/dx & calo)
 - $\ e \, / \, \mu \, / \, \pi^{+} \, / \, p \, / \, K \, / \, n \, / \, \pi^{0} / \, \gamma$
 - Low p_t and "normal"
 - Particle ID in jets
- Exclusive decay mode reconstruction:
 - τ leptons
 - B, D hadrons
 - + "control benchmarks":
 - LEP, dL/dE
 - gluon splitting g->bb?
 -

Optimisation benchmarks – Physics Level -

m_H from ee->vvH->vvbb

- JER
- π^0 reconstruction
- b-tag, l in jet, excl. B decays
- JES, b-tag, had., frag, neutral hadrons fraction uncertainties

Similar, but for "light jets": m_w from ee->evW->evqq

A_{FB} (top)

- JER, lepton ID, b-tag
- Jet charge, excl. B-decays,

Mono-photon WIMPs

Higgs CP properties H->ττ

- τ reconstruction
- PID, Exclusive decay modes
- momentum & impact parameter

Near-degenerate Higgsinos

- Reco of low momentum particles
- Fake tracks
- PID, Exclusive decay modes
- Hermeticity
- Low and high-energy photon energy & angle resolution
- Photon energy resolution & scale, hermeticity, suppression of Bhabhas, dL/dE_{CM}

Balance manpower

Address remaining Physics Case question

Justify most important detector design choices

ILD needs to agree on a balanced choice of priorities !

Conclusions

lots of studies to be done

- Cost / technology justification
- Change requests from machine
- Quantifying our calibration needs
- Missing physics case studies

many more performance aspects than we focussed on so far – some of them make TPC case?

- Low momentum particles
- Particle ID
- Jet charge,
- Systematic uncertainties

Suggestion:

- Get together a small group of people to prepare a more precise proposal for a prioritised list of studies, both for physics case and detector optimisation on a short timescale
- Maybe start with an informal gathering after end of sessions today?

Backup

Strategy Proposal

Detector-level performance

- Efficiencies, resolutions etc
- Study for O(3-4) detector models in full simulation

Example: Particle ID

- Determine actual capabilities in FullSim
- Study impact on analyses by varying PID efficiencies & fake rates in SGV

Physics performance

- ILD_o1 full simulation: reference analysis
- Where ever possible: determine *relative impact* of
 - efficiencies
 - resolutions
 - systematic uncertainties

in SGV or cheated full sim

Physics Case - M_w

- m_H, m_w and _{mt} provide crucial SM closure test
- Classic for ultra-precise (few MeV) m_w: threshold scan
- Needs lot's of data at 161 GeV
- Interesting alternative: hadronic mass in ee->evW->evqq
- Decisive systematics: momentum scale and calorimeter energy scale for single particles

• Cf Graham's talk eg at ILD meeting 2013 in Krakow

Physics Case – M_H fromH -> bb

- Cf Graham's talk at ILD meeting 2013 in Krakow
- Very competetive!
- Systematics?

Physics Case – Top Couplings

- Precision measurement of ew top couplings can constrain multi-TeV new physics
- Requires: $\sigma(tt)$ and A_{FB} (top)
- The major open detector issue:
 - B-jet charge reconstruction!
- Systematics:
 - Beam polarisation precision (A_{FB})
 - Luminosity (σ(tt))
 - b-tagging, R_b, g->bb?

- 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
- Cf eg Roman's talk at ILD 2013 in Krakow

[TeV]

Polarisation split

- "Simulataneous" collection of data with all 4 helicity configurations is essential to minimize systematic uncertainties, eg from
 - Time-dependent detector efficiencies, calibration, aligment etc
 - Luminosity, beam energy and polarisation measurements
- Thus: fast helicity reversal with frequency chosen to obtain a preset "mix" of helicity configurations (sign(P(e-)), sign (P(e+))):

ECM	-+ [%]	+- [%]	++ [%]	[%]	Phys. driver
250 GeV	67.5	22.5	5	5	ZH
350 GeV	67.5	22.5	5	5	M_t
500 GeV	40	40	10	10	t coup / DM / TGC
1 TeV	40	40	10	10	H / DM / TGC
90 GeV	40	40	10	10	A_LR
160 GeV	78	17	2.5	2.5	M_W