Transverse Shower via

Clustering of the TB 2016 data

TAU group meeting 23/08/17

Borysova Maryna

physics run:

electron run R741 @ 5 GeV w/ charge Divider

electron run R638 @ 5 GeV w/o charge Divider

Clustering algorithm used:

Linking neighboring pads

NEW corrected APV Maps: some channels were switched -> Now the distribution look more smoother

Re-trained Neural Network to distinguish between noise and signal: discovered patterns of noise were introduced to trainings

Mon-linear calibration: varying the position of threshold

We varying the shooting area of pad

Experiment layout

3

Performed:

- electron beam with 5 GeV, no target, no magnetic field
- with or w/o charge divider

Re-training NN

Some obvious patterns of noise were treated by NN as signal

run R638 @ 5 GeV w/o charge Divider, APV 7

Signal distribution for one layer vs pads, new NN

Custer size: MC vs Data

5 GeV & noTAB & NoTracker & New Maps

Occupancy Data and MC

Sector

Sector

Sector

Sector

Occupancy Data, run R741 @ 5 GeV w/ charge Divider

Clustering Algorithm

Linking neighboring pads: Looks for the closest neighbors (with distance no more then 1 pad in any direction) and then collects them to the cluster

Very simple

Cluster Position Reconstruction in Simulations

Logarithmic weighting:

Logarithmic Weighting Constant

At WO= 3.4 Y resolution is 0.36 mm

Non-linear calibration

the best agreement is for threshold 700 ADC

Towers distribution w/o bad channels

Towers distribution vs the threshold of Nonlinear calibration

5 GeV & noTAB & NoTracker & New Maps

Towers distribution, depending on shooting area in the pad

5 GeV & noTAB & NoTracker & New Maps

Preliminary results on MR

Hits in Tr1 and Tr2 MC vs Data

Hits in Tr1 and Tr2, Data

Checking Alignment via occupancy in Tr1 vs certain layer in Calorimeter

Checking Alignment via occupancy in Tr1 vs Tr2

Tr1	45.76
Tr2	46.36
CAL1	45.19
CAL2	45.48
CAL3	44.55
CAL4	45.73
CAL5	45.15

Outlook

- NN was retrained and it resolved the issue with cluster size agreement MC vs Data and in the signal distribution in one pad
- The cluster position was used to build shower in transverse direction
- The discrepancy in the core of transverse shower between MC and Data is probably coming from misalignment of stack of the detectors

Back up

Identification of Particle Signal with Neural Network

Clusters: MC vs Data

5 GeV electron beam

153261

94.94

14.40

147.3

20.10

26

Std Dev x

itd Dev y

70E

40 40

Custer energy vs size