Resolution Study cont.

T. Bromwich

Outline

Look at different files from the May/June run and attempt to identify common conditions for achieving good resolution results.

- Study 1: Comparing repeat resolution runs with no changes.
 - Investigate three poor performing results closely.
 - Rolling resolution study for all data files from this study combined.
 - Investigate anti-correlation of I and Q signals \rightarrow look at I' and Q' instead.
 - Look at how theta changes across a jitter run.
- Study 2: Comparing different runs across a shift.
 - Investigate particularly good/bad data sets more closely.
 - Look at I' and Q' instead of I and Q.
 - Look at how theta changes across the jitter runs.
 - Look at how theta changes with the reference attenuation.

Study 1

- Three consecutive data runs combined to give 17 x 200-trigger data sets
- Study showed > 70% correlations between mean IPC I/q, Q/q, I'/q and geometric resolution.
 Also showed > 50% correlations between mean IPA I/q, Q/q, I'/q and geometric resolution.
- Mostly due to three data points \rightarrow Investigate these more closely.

jitRun13(1:200) jitRun13(201:400) jitRun14(601:800)

• jitRun13(1:200) - Triggers 56 and 147 are problems

IPC YI

400

- For IPB trigger 56 gets removed on saturation cuts. Trig 147 on ref 3-sigma cut.
- For IPA and IPC, both are removed on ref 3-sigma cut.
- Four further triggers removed on I'/Q' cuts.
- Three further removed from X cuts.

jitRun13(201:400) – No obvious problem triggers in Y

- One trigger removed on I'/Q' cuts.
- Four further removed from X cuts.

• jitRun14(601:800) - Triggers 44, 91, 116 are problems

- For IPB triggers 44 and 116 get removed on saturation cuts. Trig 91 on ref 3-sigma cut.
- For IPA and IPC, all three are removed on ref 3-sigma cut.
- Two further triggers removed on I'/Q' cuts.
- Four further removed from X cuts.

- However, this is not unique to these files.
- Other files from this set show similar amounts of sample jumping and saturating triggers, which after cuts, still produce slightly lower resolution results

-1000

0

20

40

60

Sample number

80

John Adams Institute for Accelerator Science

Current cutting process

 Remove saturating triggers where data is lost or there are unphysical ADC counts. (Reference channel excluded, because often saturated intentionally)

• Remove empty triggers not above a certain threshold on the reference channel.

- Any triggers removed on any channels are also removed on other channels.
- Any triggers removed in Y or X, are also removed in their counterparts.
- All these processes combined typically results in the removal of about 10% of the total triggers in data set.

Repeat study with minimal cuts

- Include saturation cut and reference threshold cut. No other cuts applied.
- Manual removal of sample jumps.
- Do not apply X cuts to Y data (as sample jumps apply in different places on different boards)
- Again look at the correlation between the geometric resolution and various parameters.
- Found almost identical result:
 - > 70% correlations between mean IPC I/q, Q/q, I'/q and geometric resolution.
 - > 60% correlations between mean IPA I/q, Q/q, I'/q and geometric resolution.

	A l'/q	-0.14		A l'/q	0.66
	A Q'/q	-0.62		A Q'/q	0.51
	B l'/q	-0.28		B l'/q	0.44
	B Q'/q	-0.22		B Q'/q	0.07
	C I'/q	-0.08		C l'/q	0.76
Std	C Q'/q	-0.39	Mean	C Q'/q	-0.57
	Ref Y	-0.25		Ref Y	0.45
	A I/q	-0.14		A I/q	0.69
	A Q/q	-0.28		A Q/q	-0.64
	B I/q	-0.08		B I/q	0.37
	B Q/q	-0.20		B Q/q	-0.44
	C I/q	-0.10		C I/q	0.80
	C Q/q	-0.33		C Q/q	-0.76

Study 1: results IPC

• Same three bad data points, so it does not appear to be a cuts-related phenomena.

Study 1: results IPA

• Same three bad data points, so it does not appear to be a cuts-related issue.

Examine the waveforms

- Nothing obviously different about these three compared to others on examination of waveforms once the necessary cuts have been applied.
- Examples on the next two slides:
 - jitRun14(601:800) -- geometric resolution 33nm
 - jitRun14(201:400) geometric resolution 29 nm

jitRun14(601:800) → 33nm

jitRun14(201:400) → 29nm

Introduce a new cut

- In order to calculate resolution on a rolling file, need some way of removing the sample jumps without reintroducing to many cuts.
- 5 sigma cut seems to successfully remove them without cutting anything else unecessarily.

Necessary to apply to all channels because the jumps do not occur on all simultaneously.

• Leave out the I', Q' and reference cuts for now.

- Combine all three data sets into one 3400-trigger data set.
- Break it up into 200 triggers i.e. 1:200, 2:201, 3:202, 4:203 to see what the geometric resolution does over time.

- Include saturation cut and reference threshold cut. No other cuts applied.
- Sample jumps removed by 5-sigma cut on all channels. ۲
- Do not apply X cuts to Y data (as sample jumps apply in different places on different boards)
- Again look at the correlation between the geometric resolution and various parameters.
- Found: •

> 50% correlations between mean IPA/B/C I/q, Q/q and I'/q and geometric resolution.

	A l'/q	0.28		A l'/q	0.58
	A Q'/q	-0.48		A Q'/q	0.39
	B l'/q	0.18		B l'/q	0.42
	B Q'/q	-0.03		B Q'/q	0.14
	C I'/q	0.43		C I'/q	0.56
Std	C Q'/q	0.06	Mean	C Q'/q	-0.32
	Ref Y	0.11		Ref Y	0.30
	A I/q	0.20		A I/q	0.61
	A Q/q	0.31		A Q/q	-0.57
	B I/q	0.08		B I/q	0.37
	B Q/q	0.18		B Q/q	-0.42
	C I/q	0.14		C I/q	0.61
	C Q/q	0.44		C Q/q	-0.56

• Correlations between, for example, the mean IPC I/q level and the geometric resolution can be clearly separated into distinct regions corresponding to temporal places in the data set.

Study 1: Anti-correlation of I & Q

- Investigate the correlation between I/q and Q/q \rightarrow Appears on all of this data sets here.
- Example jitRun14(1:200)
- ~ 100% correlation on IPA and IPB, ~90% on IPC. •

Study 1: Correlation with position

• I, Q and I' and Q' with position

Study 1: Theta with time

• Use the calibrations for IPA, IPB and IPC to determine the intercept.

Study 1: Correlation with theta

• Calculate theta for each trigger across the jitter run and look at correlations.

Study 2: Compare jitRun8 and 9

20 nm

Compare the two most extreme cases: jitRun8 10dB Board1 260517

jitRun9_10dB_Board1_260517 40 nm

Differences between these two files:

- Slight change in the attenuation on the reference signal (6dB) are accounted for by scaling the diode reference signal to 50dB to make all comparable.
- New calibrations. New background subtractions.
- Plot I' and Q' rather than I and Q.
- How theta is changing across the jitter runs.

Study 2: jitRun8 (20nm)

Study 2: jitRun9 (40nm)

Study 2: jitRun8 (20nm) theta

Study 2: jitRun9 (40nm) theta

Study 2: Theta and Ref atten.

Look at how theta from the calibration changes with the reference attenuation setting.

Ref attenuation (dB)	44	47	47	50	53
theta A	1.31	-0.98	-0.96	0.93	-1.35
theta B	0.93	-1.35	-1.33	0.52	1.43
theta C	0.92	-1.35	-1.33	0.50	1.42
Associated resolutions (nm)	30	20	33, 30,30	28	40

