# **Update of** $h \rightarrow \mu^+ \mu^-$ Analysis

#### Shin-ichi Kawada (DESY)

2017/October/11

Software/Analysis Meeting





# Reminder (copy of my AWLC2017 talk)

Showed first results of  $h \rightarrow \mu^+ \mu^-$  at 250/500 GeV based on ILD full simulation for the first time

| Table 7:           | Obtained precision            | $\frac{\Delta(\sigma \times BR)}{(\sigma \times BR)}$ |             |
|--------------------|-------------------------------|-------------------------------------------------------|-------------|
| $500  {\rm GeV}$   | $q\overline{q}h$              | $ u \overline{ u} h$                                  |             |
| left-handed        | $26\% (1600 \text{ fb}^{-1})$ | $31\% (1600 \text{ fb}^{-1})$                         |             |
| right-handed       | $36\% (1600 \text{ fb}^{-1})$ | $61\% (1600 \text{ fb}^{-1})$                         | Č.          |
| $250 \mathrm{GeV}$ | $q\overline{q}h$              | $ u \overline{ u} h$                                  |             |
| left-handed        | $29\% (1350 \text{ fb}^{-1})$ |                                                       | preliminary |
| right-handed       | $45\% (450 \text{ fb}^{-1})$  |                                                       | -           |



Everything is better than extrapolation results Combine everything gives **14%** precision: almost same precision expected at the HL-LHC

# **Quick Introduction**

- Obtained several first numbers based on real analysis
  - 500 GeV: qqh, nnh
  - 250 GeV: qqh
  - presented at AWLC2017
- Problem: huge uncertainties due to limited MC statistics
  - sometimes event weight ~ 20 (~ 40 with TMVA) when we assume H20 running scenario
  - technically impossible to increase SM background
- Solution: toy MC
  - perform toy MC study for all channels to obtain more reliable results

# One Example: qqh500-L (1)



 $M_{\mu^{+}\mu^{-}}$  spectrum after precuts + BDTG cut beautiful spikes due to low MC statistics N<sub>S</sub> = 11 and N<sub>B</sub> = 422 at this point

determine model function by fitting  $f_S$ : normalized Gaussian (green)  $f_B$ : constant (yellow)  $\therefore$  background fitting is performed with log-likelihood method (default is  $\chi^2$  method in ROOT fitting)

# One Example: qqh500-L (2)



do pseudo-experiment blue: pseudo signal data ( $N_S$  w/ Poisson fluc.) red: pseudo background data ( $N_B$  w/ Poisson fluc.) black: blue + red purple: fit result to black with  $f = Y_S f_S + Y_B f_B$ free parameters:  $Y_S$  and  $Y_B$ fit with log-likelihood method normalization considered

repeat pseudo-experiment 200000 times (takes 3-4 hours) obtain  $Y_S$  distribution

# One Example: qqh500-L (3)



 $Y_S$  distribution Gaussian fit result mean: 10.927 +- 0.012 sigma: 5.2265 +- 0.0079 precision = sigma/mean = 47.8%

pull distribution pull =  $\frac{Y_S - Y_{true}}{\Delta Y_S}$ Gaussian fit result mean: -0.0711 +- 0.0019 sigma: 0.7791 +- 0.0012

#### Toy MC Study: Results

|       | qqh500 | nnh500 | qqh250 |
|-------|--------|--------|--------|
| left  | 47.8%  | 39.2%  | 30.0%  |
| right | 52.1%  | 71.5%  | 52.5%  |

All details are available at:

http://desy.de/~skawada/MyAnalysisNote/Analysis08\_EN.pdf (47 pages, 200 figures, 7 tables, (crazy length)) Pull distribution is asymmetric: bias?

Combined precision: **17.9%** HL-LHC: 14% (ATLAS-PHYS-PUB-2013-014)

## Summary

- Performed toy MC studies and modified results for all channels
  - asymmetric pull distribution: bias?
  - all results are worse than previous, but still similar combined precision can be reached compare to HL-LHC
- Started nnh250 analysis, and Ilh250/Ilh500 in near future
  - should be summarized into a paper in future