Top electroweak couplings study using di-muonic state at \sqrt{s} **= 500 GeV, ILC with the Matrix Element Method**

Yo Sato

Current status

Assessment of Matrix element method

Update the kinematical reconstruction

New χ^2 for assessment of goodness of fit

We found that the fluctuation of CL or χ^2_{test} is too large when other samples of events are used. $\chi^2_{\text{test}} = \sum \delta F_i V_{ij}^{-1} \delta F_j$

- \rightarrow Return back step by step
- without background
- without background and miss-assignment events
- without background, miss-assignment events and ISR/BS
- compare with MC truth at each step

with bkg (last time)

without bkg (with MC, dark color)

without bkg and miss-assignment

without bkg and miss-assignment (with MC)

without bkg, miss-assignment and ISR

without bkg, miss-assignment and ISR (with MC)

Comments

• with bkg. $(p.3) \leq p$ without bkg. $(p.4)$

difference is small \rightarrow bkg. is not critical effect.

• at without bkg., Rec. $(p.4) \leq -\geq MC$ (p.5)

difference is large \rightarrow miss-assignment has large effect.

• at without bkg. and miss, Rec. $(p.6) \leq p$ MC $(p.7)$

difference is small \rightarrow detector effect is small

• without bkg., miss and ISR (p.9)

chi2 is small \rightarrow ISR has significant effect on the bias.

Kinematic fit : Strategy

Neutrinos and photon of ISR cannot be reconstructed by detectors, because

- Neutrino can't interact by electromagnetism
- Photon of ISR mostly enters the beam pipe.

There are 7 unknowns in di-muonic state of top pair production.

$$
P_{x,v}, P_{y,v}, P_{z,v}, P_{x,\overline{v}}, P_{y,\overline{v}}, P_{z,\overline{v}}, P_{z,\gamma_{\text{ISR}}}
$$

To recover them, we impose 8 constraints,

- Initial state constraints : $E_{total} = 500$ GeV, $\vec{P}_{total} = \vec{0}$
- Mass constraints : $m_t = m_{\bar{t}} = 174 \text{ GeV}, m_{W^+} = m_{W^-} = 80.4 \text{ GeV}$

There are enough constraints to determine the missing variables, in principle.

Kinematic fit : Algorithm

Introduce 4 free parameters

 P_{χ} _v, P_{χ} _v, P_{χ} _v, P_{χ} _{v_{isp}}

Other missing variables are defined as follows;

 $P_{\chi,\overline{\nu}} = -(P_{\chi,\text{Visible}} + P_{\chi,\nu}), P_{\chi,\overline{\nu}} = -(P_{\chi,\text{Visible}} + P_{\chi,\nu}), P_{\chi,\overline{\nu}} = -(P_{\chi,\text{Visible}} + P_{\chi,\nu} + P_{\chi,\text{VISP}})$

All physics variables also can be computed using these parameters.

Define the likelihood function;

 $L_0 = BW(m_t, 174)BW(m_{\bar{t}}, 174)BW(m_{W^+}, 80.4)BW(m_{W^-}, 80.4)Gaus(E_{total}, 500)$

 (BW) : Breit-Wigner function, *Gaus*: Gaussian function, other parameters are written in backup)

To correct the energy resolution of b-jets reconstruction, we add 2 parameters, E_b , $E_{\bar{b}}$, and resolution functions, *, to the likelihood function.*

$$
L = L_0 * R(E_b, E_b^{\text{reconstructed}}) R(E_{\bar{b}}, E_{\bar{b}}^{\text{reconstructed}})
$$

For simplicity, we define $q^2 = -2 \log L$. **13**

Scatter plot of $m_{t\bar{t}}$ **(MC vs Rec.)**

It seems that there is correlation. This is better than previous algorithm (but not so great). It can be useful to reject events which have hard ISR photons.

New χ^2 for assessment of goodness of fit

Fujii-san suggested that previous definition of χ^2_{test} can't assess the goodness of fit. $\chi^2_{\text{test}} = \sum \delta F_i V_{ij}^{-1} \delta F_j$

We are trying to use another χ^2 (definition is on backup slides). But it's complicated and I don't understand the meaning of that yet…

If you have any suggestions or comments, please let me know !

Plan

- Use new algorithm of the kinematical reconstruction for samples of all events including background.
- Assess the goodness of fit using new χ^2 .

8 Moments and Goodness of fit

The rLO full PDF is:

$$
f_{\rm rLO}(\vec{r}) = (1 + \sum_{i} r_i \omega_i + \sum_{ij} r_i r_j \tilde{\omega}_{ij}) f_{\rm SM}(\omega, \tilde{\omega})
$$
\n(19)

Provided the above PDF describes correctly the data, the expected values of the ω_i and $\tilde{\omega}_{ij}$ variables, as computed using the events at hand, must satisfy:

$$
\langle \omega_k \rangle_{rLO}(r_i) = \Omega_k + \sum_i r_i \Omega_{ik} + \sum_{ij} r_i r_j \tilde{\Omega}_{ij;k}
$$
\n(20)

$$
\langle \tilde{\omega}_{kl} \rangle_{rLO}(r_i) = \tilde{\Omega}_{kl} + \sum_{i} r_i \tilde{\Omega}_{kl,i} + \sum_{ij} r_i r_j \tilde{\Omega}_{ijkl} \tag{21}
$$

where the Ω 's coefficients are computed through Monte Carlo integration using the SM PDF, as:

$$
\Omega_k = \int \omega_k f_{\text{SM}}(\omega, \tilde{\omega}) \tag{22}
$$

$$
\Omega_{ik} = \int \omega_i \omega_k \ f_{\text{SM}}(\omega, \tilde{\omega}) \tag{23}
$$

$$
\tilde{\Omega}_{ij;k} = \int \tilde{\omega}_{ij} \omega_k f_{\text{SM}}(\omega, \tilde{\omega}) \tag{24}
$$

$$
\tilde{\Omega}_{kl} = \int \tilde{\omega}_{kl} f_{\text{SM}}(\omega, \tilde{\omega}) \tag{25}
$$

$$
\tilde{\Omega}_{ijkl} = \int \tilde{\omega}_{ij} \tilde{\omega}_{kl} f_{\text{SM}}(\omega, \tilde{\omega}) \tag{26}
$$

It has been checked that if the actual moments computed with Data were to obey these sum-rules (and higher moments sum-rules) then the derivatives of the χ^2 indeed identically vanish, for all r_i . But the converse is not true. If Data are not rLO-Data then the sum-rules are not satisfied. Therefore, these sum-rules provide a means to assess the quality of the fit. A series of tests of goodness of fit can be carried using 23 :

$$
\chi_k^2(r_i) = \frac{(\langle \omega_k \rangle - \langle \omega_k \rangle_{\text{rLO}}(r_i))^2}{\langle \omega_k^2 \rangle - \langle \omega_k \rangle^2} \tag{27}
$$

$$
\tilde{\chi}_{kl}^2(r_i) = \frac{(\langle \tilde{\omega}_{kl} \rangle - \langle \tilde{\omega}_{kl} \rangle_{\text{rLO}}(r_i))^2}{\langle \tilde{\omega}_{kl}^2 \rangle - \langle \tilde{\omega}_{kl} \rangle^2}
$$
\n(28)