BeamCal operation parameters

Sergej Schuwalow, DESY Hamburg

- ILC accelerator TDR parameters
- Changes since TDR
- ILC beam time structure
- Signals at the BeamCal readout
- MIPs, BeamCal calibration
- BeamCal based on sapphire sensors

ILC baseline parameters

(Technical Design Report)

Centre-of-mass energy	E _{CM}	GeV	200	230	250	350	500	
Luminosity pulse repetition rate		Hz	5	5	5	5	5	
Positron production mode		Hz	10	10	10	Nom.	Nom.	
Estimated AC power	P _{AC}	MW	114	119	122	121	163	
Bunch population	Ν	x10 ¹⁰	2	2	2	2	2	
Number of bunches	nb		1312	1312	1312	1312	1312	-
Linac bunch interval	tb	ns	554	554	554	554	554	Ţ
RMS bunch length	Z	nm	300	300	300	300	300	
Normalized horizontal emittance at IP	х	μm	10	10	10	10	10	
Normalized vertical emittance at IP	У	nm	35	35	35	35	35	
Horizontal beta function at IP	х	mm	16	14	13	16	11	
Vertical beta function at IP	У	mm	0.34	0.38	0.41	0.34	0.48	
RMS horizontal beam size at IP	х	nm	904	789	729	684	474	
RMS vertical beam size at IP	У	nm	7.8	7.7	7.7	5.9	5.9	
Vertical disruption parameter	Dy		24.3	24.5	24.5	24.3	24.6	
Fractional RMS energy loss to beamstrahlung	Bs	%	0.65	0.83	0.97	1.9	4.5	
Luminosity	L	x10 ³⁴	0.56	0.67	0.75	1.0	1.8	
Fraction of L in top 1% ECM	L _{0.01}	%	91	89	87	77	58	
Electron polarisation	P-	%	80	80	80	80	80	
Positron polarisation	P+	%	30	30	30	30	30	
Electron relative energy spread at IP	p/p	%	0.20	0.19	0.19	0.16	0.13	
Positron relative energy spread at IP	p/p	%	0.19	0.17	0.15	0.10	0.07	

l

ILC-2017 parameters

			TDR			New	
Ecm		GeV	250	500		250	
Ν		e10	2.0	2.0		2.0	
Collision frequency		Hz	5.0	5.0		5.0	
Electron linac rep rate	е	Hz	10.0	5.0		5.0	
Nb			1312	1312		1312	
Bunch separation		ns	554	554		554	
Beam current		mA	5.78	5.78		5.78	
P _B		MW	5.3	10.5		5.3	
σ _z		mm	0.3	0.3		0.3	
σ _E /E (e-)		%	0.188	0.124		0.188	
σ _E /E(e+)		%	0.15	0.07		0.15	
ε _{nx}		μm	10.00	10.00		5.00	
ε _{ny}		nm	35.0	35.0		35.0	
electron polarization		%	80	80		80	
positron polarization		%	30	30		30	
β _x		mm	13.0	11.0		13.0	
β _y		mm	0.41	0.48		0.41	
σ _x		nm	729.0	474.2		515.5	
σ _y		nm	7.66	5.86		7.66	
θ_{x}		μr	56.1	43.1		39.7	
θ_y		μr	18.7	12.2		18.7	
Dx			0.26	0.30		0.51	
Dy			24.5	24.6		34.5	
Upsilon (average)			0.020	0.062		0.028	
Ngamma			1.21	1.82		1.91	
δ_{BS}		%	0.97	4.50		2.62	
Lgeo		1.0E+34	0.374	0.751		0.529	
L (simulation, waist s	hift)	1.0E+34	0.82	1.79		1.35	

(Kaoru Yokoya for the Parameter Group)

The luminosity at the center-of-mass energy 250GeV can be improved by factor ~1.65 by adopting the horizontal emittance at IP factor 2 smaller than in the TDR. This is achieved by modifying the damping ring design slightly.

There are several side effects:

-The energy loss by the beamstrahlung will increase about a factor ~2.6. Also, the background from the incoherent pair creation increases by factor ~3. -The vertical disruption parameter increases from ~25 to ~35. This might require more accurate IP position control but within the manageable range.

ILC beam time structure

Signal arrival time incertainty due to geometrical factors: Longitudinal ~ 0.4 ns Radial ~ 0.4 ns

Signals at the BeamCal Readout

Signals at the BeamCal Readout

Modification of BeamCal design for sapphire sensors application

Old

-

New vs Old BeamCal design

Pro:

- Better radiation hardness (new sensors) x10
- Easier physical calibration and radiation damage monitoring (to be demonstrated in details)
- Reduced required R/O dynamic range x10

Contra:

- Worse spatial uniformity
- Worse energy resolution

Impact on physics to be understood

Dynamic range needed for BeamCal readout (high energy electrons/MIPs)

To be updated for new ILC parameters

BeamCal readout dynamic range in the presence of background

- It is very hard to follow up the rapidly changing BeamCal background conditions when ILC parameters are often modified
- Meanwhile we can rely on simple observation: if background level reaches the level of the most energetic (beam energy) electron showers, shower reconstruction efficiency becomes unacceptably low.
- Thus, for estimates, use BeamCal simulation results without background overlapping and at the end increase by a factor of 2 the upper limit of the expected signals.

To be done both for GaAs (baseline) and sapphire designs