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Trend in Calorimetry

Tower geometry

Energy is integrated over
large volumes into single
channels

Readout typically with
high resolution

Individual particles in a
hadronic jet not resolved

Readout channels
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Calorimeters in HEP

Imaging calorimetry

Large number of calorimeter
readout channels (~107)

Option to minimize
resolution on individual
channels

Particles in a jet are
measured individually




60 GeV r+

The DHCAL prototype ;
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Description ' L
Hadronic sampling calorimeter
Designed for future electron-positron collider (ILC) R
54 active layers (~1 m?2) = ;
Resistive Plate Chambers with 1 x 1 cm? pads L il
- ~500,000 readout channels E il
Signal pads ,::,
G10 board 3
Resistive paint
0.85mm glass o
11smeas @ i) Electronic readout
Resistive paint Lo glass —~ FIShlng line
Mylar . . .
’ Aluminum foil — 1 — bit (dlgltal)
Tests at FNAL

with Iron absorber in 2010 — 2011
with no absorber in 2011

Tests at CERN
with Tungsten absorber in 2012




DHCAL Construction
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Fe-DHCAL at Fermilab

Fermilab Test Beam Facility
Covers 1 — 120 GeV/c

Mixture of pions, electrons and muons (up to 60 GeV/c)

Primary protons at 120 GeV/c
Cerenkov counter for particle 1D
4 s spill every 60 s

Muon Trigger:
2 x (1 m x 1 m scintillator)

Secondary Beam Trigger:
2 x (20 cm x 20 cm scintillator)

Event: )
Time stamp, Cerenkov/muon tagger bits

X, Y, z, time stamp

Nearest neighbor clustering:
Combine hits with a common edge

> Cluster:

X, Y Z

Density 3x3:

Number of neighbors in 3x3
pads surrounding the hit
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Calibration Procedures

RPC performance

Average efficiency to detect MIP: €, ~ 96%
Average pad multiplicity: p,~ 1.6 RPC

1. Full Calibration: H .. . = Z
i=RPC, €i M,

Developed due to the fact that a pad will fire if it
gets contribution from multiple traversing particles regardless of the efficiency of
this RPC. Hence, the full calibration will overcorrect. Classifies hits in density bins

(number of neighbors in a 3 x 3 array). -Z
3. Hybrid Calibration: Density bins 0 and 1 receive full calibration. JT
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Fe-DHCAL Pion Response and Energy Resolution
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Fe-DHCAL — Response

DHCAL Response with Fe Absorber

Over-
Compensation

Under—

10 102
Particle momentum [GeV/c])

The DHCAL is different...

Higher order corrections
(Software compensation) might
increase the range of compensation

e: Response to electromagnetic
interactions
h: Response to hadronic interactions

e/h=1 =» compensating



W-DHCAL at CERN

PS RPC rate limitations
Covers 1 —-10 GeV/c ~6 % loss of hits
Mixture of pions, electrons, protons, (Kaons) (in the following not yet corrected)
Two Cerenkov counters for particle ID Time constant ~ 1 second

1-3 400-ms-spills every 45 second (RPC rate capability OK)
Data taking with ~500 triggers/spill

(]
SPS gm i 300 GeV/c
Covers 12 — 300 GeV/c g 1800
Mostly set-up to either have electrons or pions (18 Pb foil) 2
Two Cerenkov counters for particle ID 1600
9.7-s-spills every 45 — 60 seconds
RPC rate capability a problem 1400 bl L
0 1 2 3 4 5 6 7 8 9 10

(running with limited rate: 250 — 500 triggers/spill)

Event time within a spill [s]

Main Stack orift Chamb
rift Chambers
/ Cerenkov counters CAI.' 69

Tail Catcher

Calorimeter for IL

Trigger counters



Mean of response

W-DHCAL Response at the PS (1 -10 GeV)
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Fluctuations in muon peak
Data not yet calibrated

Response non-linear
Data fit empirically with aE™
m= 0.90 (hadrons), 0.78 (electrons)
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Pions (68.0+0.4)% (5.4+0.7)%
Electrons  (29.4+0.3)% (16.6+0.3)%



W-DHCAL Response at the PS (1 - 10 GeV)
and SPS (12 - 300 GeV) Combined

2000

N = aE™

a | W-DHCAL with 1 x 1 cm?

Pion —
Pion +
Electron
Positron

1500 |-

Mean of response
0 e O N

Highly over-compensating
(smaller pads would increase the
electron response more than the
Broton hadron response)
1000
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DHCAL with Minimal Absorber: Min-DHCAL

» Special testbeam taken at Fermilabin
November 2011 in minimal absorber
configuration without absorber plates

» 2.54 cm spacing between each layer which

feature a front-plate (2 mm copper) and rear
plate (2 mm steel)

» Each cassette has a thickness of 12.5 mm
corresponding to

* 0.29 radiation lengths (X)) *
* 0.034 Interaction lengths (1;)

i Total thickness: 15 X,
Or 1.74;

Unprecedented details of low energy
electromagnetic showers!




DHCAL Simulation

GEANT4 based simulation gives raw points of ionisation
Simulation of RPC charge avalanche & read-out by standalone program

(RPC_sim) £ o s
—  Charge generated randomly following parametrization (taken from analog RPC tests) %u.oe - R
— Radial charge distribution modeled by double-Gaussian Zoosf .

- o - 8 e :

fir)=(1—-R)*e 26,)°+ R=e (20))* Al :

—  Close-by avalanches suppression (d ) pe2r p
— Threshold to convert charge to hits (TT) T S
Tu ni ng genaratad charge (pC|

Charge distribution in x-y

— 07,0, R and TT tuned using muons
—  d e tuned using positrons (3 & 10 GeV)
Initially FTFP_BERT physics list was used
» Led to unsatisfactory agreement (see later)
Now using ‘Option 3’ or *_ EMY’ (optimized for low energies)
— Main differences:

* Reduced rangesize in computation of the step limit by ionization
process and improved treatment of multiple scattering




Min-DHCAL Response to Positrons
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Peak position of the number of hits
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Data and MC agree reasonably well for
all energies

Data 131.8+2.8 0.76+0.02

FTFP_BERT_EMY 115.8+0.1 0.84 +0.00

Data and MC agree well only for EMY
physics list

I T T

Data 6.3+0.2 143+0.4
FTFP_BERT_EMY 6.2+0.1 13.4+£0.2



Min-DHCAL Electromagnetic Shower Shapes

Transverse shower shape Longitudinal shower shape
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Min-DHCAL Electromagnetic Response Linearization
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Before leakage correction
After leakage correction
After linearization
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Leakage correction is from longitudinal shower
shapes; linearization is using 3x3x3 hit
densities (D;) to minimize

26 2
Z w;D; — aE; "

j=0
Eibeam

=2

1

7
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Before Leakage |After Leakage After

Corr. Corr. Linearization

a 131.8£3.5 132.1+3.5 [ 100.2+2.2

m 0.76 £ 0.02 0.78 £0.02 | 0.95 +0.02

Linearization improves the resolution by 2-10 %.

Weights can then be used to linearize the
electromagnetic subshowers in pion interactions
=>» expect significantly improved resolution.

Constant term [%] Stochastic term [%)]

Unweighted

Weighted




Conclusions

O The first Digital Hadron Calorimeter was built and tested
successfully. By construction, the DHCAL was the first large-scale
calorimeter prototype with embedded front-end electronics, digital
readout, pad readout of RPCs and extremely fine segmentation.

O Fine segmentation allows the study of electromagnetic and
hadronic interactions with unprecedented level of spatial detail, and
the utilization of various techniques not implemented in the
community so far (software compensation, leakage correction, ...).

0 Standard Geant4 simulation package fails to reproduce data well.
Some optional packages allow big improvement in the agreement.
The disagreements are at the very fine level of detail which is not
available in conventional calorimeters.

The concept of Digital Hadron Calorimetry is validated.



