Performance of a Highly Granular Scintillator-SiPM Based Hadron Calorimeter Prototype in Strong Magnetic Fields

IEEE Nuclear Science Symposium
Atlanta - 23.10.17

Christian Graf
for the CALICE Collaboration

- Overview
- Technologies used
- Test-beam performance
- Outlook - full technical prototype
Aim: Development of new technologies for calorimetry with highly granular detectors

- Several technologies under study
- This talk: focus on **analog hadronic calorimeter** (AHCAL)
Highly Granular Calorimeters - Motivation

- Future linear accelerator e.g., ILC or CLIC
- Detectors rely on Particle Flow algorithm to achieve ~ 3% jet energy resolution
- Highly granular calorimeters needed to resolve single particles in a jet
 - \Rightarrow 8 Mio channels
- Other applications:
 - LHC (CMS), neutrino experiments, …
AHCAL - Physics Prototype

- Show principle of highly granular calorimeters (~8000 channels)
- Successfully tested in DESY, CERN, FNAL test-beam campaigns
- Proved competitive single hadron energy resolution and two particle separation

![AHCAL prototype setup](image)

Figure 24. CALICE calorimeter system setup at CERN in 2006 (left) and 2007 (right).

Figure 25. Event collection rate during test beam in 2006 (left) and 2007 (right).

9.3 MIP Calibration

The calibration of each cell is accomplished with muons from a beam that has a sufficiently broad distribution to cover the entire front face of the AHCAL. A minimum of 2000 muon events per cell is necessary to obtain a reliable fit to the pulse height spectrum that is parameterized as a convolution of a Landau distribution and a Gaussian function. For a uniform beam distribution this amounts to a total of 5×10^5 events. Since the beam...
• Prove scalability to full detector
• Steel and tungsten absorbers - partially instrumented
• Time measurements possible
• Small steel stack:
 • Precision measurements of em showers
 • Test of temperature compensation / power-pulsing
• Data analysis still ongoing
• Sampling calorimeter based on scintillators and silicon photomultipliers (SiPMs)

• Scintillator tiles of size 3 x 3 x 0.3 cm³, dimple for light focusing, wrapped in reflecting foil

• HCAL base unit (HBU) with fully integrated electronics
Readout

• Readout ASIC: Spiroc2b
• 36 channels (ext. trigger or auto-trigger)
• 12 bit ADC for energy and time measurement
• 16 memory cells per channel
• Central Interface Board (CIB)
 • fitted for space constraints in real detector
 • Contains: Detector Interface (DIF), Calibration, Power
• Power board capable of power pulsing and software adjustment of SiPM power voltage
Power Pulsing

- **Power pulsing**: 8 Mio channels, no active cooling → reduce power consumption

- Rapidly cycling the power according to the beam structure of a linear accelerator

- 1ms train of bunches spaced ~300ns apart, 199ms idle time

- SiPM gain stays stable with power pulsing
AHCAL Test-beam with Magnetic Field

- 15 Layers in small steel stack, > 2000 channels
- Taking data with and without 1.5T magnetic field
- Muons, 10-60GeV Electrons
- Detector survived 2.4T
First Results (Work in Progress)

Magnet off

10 GeV Electrons

Hit Position Y

Hit Position X

Normalized Entries

CALICE AHCAL Work in progress

Electrons 10GeV

Magnet Off

Magnet On
First Results (Work in Progress)

Hit Position Y

Hit Position X

Magnet on

10 GeV Electrons
First Results (Work in Progress)

- Energy sum increases with magnetic field for electrons
First Results (Work in Progress)

- Energy sum increases with magnetic field for electrons
- Effect is two-fold:
 1. increase in MIP scale
 2. increase in number of hits
First Results (Work in Progress)

• Energy sum increases with magnetic field for electrons

• Effect is two-fold:
 1. increase in MIP scale
 2. increase in number of hits

• Time distributions stay stable with slight broadening of distribution during / after magnetic field
Outlook

- Construction of large technological prototype
- 40 Layers, 160 HBUs, 23000 channels
- Mass production:
 - SiPM testing and characterization
 - AISIC tests
 - PCB construction and testing
 - Automatic scintillator tile wrapping and assembly
 - Cosmic ray tests
- Towards hadronic test-beam at SPS in 2018
• Construction of large technological prototype
• 40 Layers, 160 HBUs, 23000 channels
• Mass production:
 • SiPM testing and characterization
 • AISIC tests
 • PCB construction and testing
 • Automatic scintillator tile wrapping and assembly
 • Cosmic ray tests
• Towards hadronic test-beam at SPS in 2018
Outlook

- Construction of large technological prototype
- 40 Layers, 160 HBUs, 23000 channels
- Mass production:
 - SiPM testing and characterization
 - AISIC tests
 - PCB construction and testing
 - Automatic scintillator tile wrapping and assembly
 - Cosmic ray tests
- Towards hadronic test-beam at SPS in 2018

Christian Graf
IEEE NSS '17
• Construction of large technological prototype
• 40 Layers, 160 HBUs, 23000 channels
• Mass production:
 • SiPM testing and characterization
 • AISIC tests
 • PCB construction and testing
 • Automatic scintillator tile wrapping and assembly
 • Cosmic ray tests
• Towards hadronic test-beam at SPS in 2018
• Construction of large technological prototype
• 40 Layers, 160 HBUs, 23000 channels
• Mass production:
 • SiPM testing and characterization
 • AISIC tests
 • PCB construction and testing
 • Automatic scintillator tile wrapping and assembly
 • Cosmic ray tests
• Towards hadronic test-beam at SPS in 2018
Summary

- Successful test-beam campaign with 1.5T magnetic field
- Power pulsing and temperature compensation established
- Data analysis of various test-beam campaigns ongoing
- Construction of new fully instrumented AHCAL technological prototype ongoing
Backup