Update on WIMP Analysis

Moritz Habermehl

ILD Software / Analysis Meeting

18 October 2017

- note: this is not a complete (rehearsal) talk
- I'm just showing new material
- my talk at LCWS: Thursday, BSM session, 11:44, Madrid 2 (remotely)

WIMPs in the mono-photon channel

- signal
 - WIMPs produced in pairs with ISR photon
 - ${\rm e^+e^-} \to \chi \chi \gamma$
 - single photon in an "empty" detector
 - observables: E_{γ} , θ_{γ}

• main background processes

- neutrino pair production $e^+e^- \rightarrow \nu \bar{\nu} \gamma$
- Bhabha scattering $e^+e^- \rightarrow e^+e^-\gamma$
- theory approach
 - effective operators
 - $\Lambda = M_{mediator} / \sqrt{g_f g_{\chi}}$

Updated cuts

- slightly different signal definition
 - 2 GeV<E $_{\gamma}$ <220 GeV
 - $\theta_{\gamma} > 7^{\circ}$
 - $p_{T,\gamma} > 1.97 \text{ GeV}$ for $\phi_{\gamma} > 35^{\circ}$, $p_{T,\gamma} > 5.71 \text{ GeV}$ for $\phi_{\gamma} \le 35^{\circ}$ (BeamCal coordinates)
- as before: veto events
 - with tracks with $p_T > 3 \text{ GeV}$
 - and with BeamCal clusters
- updated cut on the visible energy
 - add up all PFO energies (also charged particles)
 - only consider particles with E > 5 GeV (lower energies probably overlay)
 - allow a maximum energy sum of 10 GeV
 - or 30 GeV, if the extra energy is from reconstructed neutrons or pions

energy distribution of PFOs ($\nu \bar{\nu}$ RL)

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 18 Oct 2017 | 5

DESY

efficiency of background suppression

	sig. def.	p⊤ GeV	E _{vis} GeV	BCal
$\nu \bar{\nu}$				
unpolarised	4499.6	4334.3	3837.3	3761.0
		96.33%	85.28%	83.58%
before the update		96.54%	78.97%	78.72%
Bhabhas				
unpolarised				
	50101.2	22300.1	4901.4	186.7
		44.51%	9.78%	0.37%
before the update		49.66%	9.13%	0.32%

new $\mathsf{E}_{\textit{vis}}$ cut \Rightarrow more signal-like neutrino background kept, Bhabha background still a lot smaller

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 18 Oct 2017 |

Updated exclusion limits

different effective operators

extrapolation to full centre-of-mass energy range

role of polarisation

Photon reconstrucion

- triggered by the checks of DD4HEP test samples I had a closer look at my (Mokka!) $\nu \bar{\nu}$ samples
- photon energy reconstruction
 - reconstructed energy a few percent too high
 - non-linear, rises with energy
 - different ECal parts give different reconstructed energy, especially the ECal plug (aka Ecal ring)
 - reconstruction fails for some photons that hit the transition region from endcap to plug

reco energy as a function of energy

- reconstructed energy too high
- level rises with energy

Moritz Habermehl | WIMP Search | SW/Ana Phone Meeting | 18 Oct 2017 | 9

reco energy for different ECal components

• in plug reconstructed energy 10% too high

Transition region from endcap to plug

- peak at too low reconstructed energies
- in some cases photon reconstruction fails in the transition region of endcap and plug
- square shape \rightarrow expect ϕ -dependence

ϕ Dependence of Low Reconstructed Energies

number of photons with $E_{reco}/E_{MC} < 0.7$ divided by total number of photons in θ range

- for 9.3° $<\theta<12^\circ$ (transition region): ϕ distribution shows
 - reconstruction fails more often if photon is close to transition
 - fine around 0,90,180,270 degrees (γ fully contained in endcap)
 - fine around 45,135,... degrees (γ fully contained in plug)
- for $20^\circ < \theta < 30^\circ$ (test region in endcap)
 - no ϕ dependence
 - low values \rightarrow "normal" tail to lower reconstructed energies

Using MC information

- How does photon reconstruction deficits influence the WIMP limits
- idea (study is ongoing)
 - MC energies of selected photons
 - smear with detector resolution
 - \Rightarrow compare shape of photon spectrum to full simulation

