Hadron Production in Photon-Photon Processes at the ILC and the BSM signatures with small mass differences

International Linear Collider Workshop

Swathi Sasikumar, Jenny List, Mikael Berggren

23rd-27th Oct 2017

Motivation

- Issues in Standard model can be solved by Supersymmetry
- Naturalness requires light higgsinos at electroweak scale

$$m_Z^2 = 2\frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u)\tan^2\beta}{\tan^2\beta - 1} - 2\mu^2$$

- Natural region is 100-300 GeV -(accessible for ILC500)
- In certain benchmark scenarios the mass differences are 770MeV - 1.6 GeV

Motivation

> Low ΔM higgsino analysis studied by Hale Sert - <u>DESY-THESIS-2016-001</u>

> The case was studied at two benchmark scenarios

 $\Delta M(\tilde{X}_1^{\pm}, \tilde{X}_1^0) = 770 \text{ MeV} - dM770$

 $\Delta M(\tilde{X}_1^\pm,\tilde{X}_1^0)$ = 1.6 GeV - dM1600

> The mass reconstructed as:

Particle	dM1600	dM770
$\delta ilde{\chi}_1^{\pm}$	2 GeV	1.5 GeV
$\delta ilde{\chi}_2^0$	3.3 GeV	1.6 GeV

> The mass difference between the chargino and LSP estimated from energy of decay products of charginos:

dM1600	dM770
270MeV	40MeV

Motivation

- > Hale's study showed that such scenarios can be well observed at the ILC
- > The study performed without the inclusion of $\gamma\gamma$ overlay SGV fast simulation
- > Visible decay products very soft and thus similar to $\gamma\gamma \rightarrow low pt$ hadron backgrounds
- The standard methods like k_T algorithm method a success to regain the physics performance

- > Analysis for higgsinos still an exception to k_T algorithm method the low pt visible decay products misidentified as $\gamma\gamma$ overlay in exclusive mode and discarded
- > Important to study the effect of overlay on the higgsino events

Simulation and Reconstruction

- Study of effect of $\gamma \gamma \rightarrow \text{low pt hadron overlay on the higgsino samples, } e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ > from Wizhard and $\gamma\gamma$ events from the most improved version of the Barklow generator and Pythia (More details ALWC 2017 talk)
- Simulated $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ samples with vertex smeared along Z axis benchmark scenario dM770 (196.8 μm) - ILCSOFT version v01-19-02

Four different samples of $\gamma \gamma \rightarrow \text{low pt}$ hadron events simulated with smeared vertices

• $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ events overlaid with $\gamma \gamma \rightarrow \text{low pt hadron events} - (1.05 \text{ events /BX at } 500)$ GeV) - ILCSOFT version v01-19-03 Swathi Sasikumar | Hadron Production in photon-photon processes | 26-06-17 | Page 5

Reconstruction efficiency for $\gamma\gamma \rightarrow \text{low pt hadron tracks}$

- ILD performance -Diagnostics package used for tracking efficiency
- https://confluence.desy.de/display/ILD/ Reconstruction#Reconstruction-ILCSoftv01-19-01preandILDConfig_HEAD
- Tracking Efficiency of the detector studied with detector model -ILD_11_v01_dd4hep and ILCsoft version v01-19-03
- Reconstruction efficiency for the low pt hadron events above 70%
- > Important to develop method to remove $\gamma\gamma \rightarrow \text{low pt hadron events}$

Possible methods to remove $\gamma\gamma \rightarrow \text{low pT}$ hadrons

> First Method:

- > Displacement of vertices in z direction
- > Vertices of $\gamma\gamma$ overlay events displaced from that of signal vertices
- > Identifying the tracks coming from such vertices and removing them would be an effective method
- > This method cannot be used for purely neutral events like $\gamma \gamma \rightarrow \pi^0 \pi^0$
- Second method:
- > The invariant mass of decay products of rho meson gives rho mass
- > Rho meson used as a tag to remove $\gamma\gamma$ events
- > Could be applied on very small event number

Detector Resolution for vertices

- Vertices of γγ overlay events displaced from that of signal vertices in z
- > z_vtx resolution studied for vertices having 2 or greater than 2 tracks associated
- > With increasing number of tracks in the primary vertex the resolution for vertex z position gets better by $\sqrt{N_{trk}}$ as expected
- For the signal events 60% of the events z_vtx resolution ~ 35µm or better
- > For the overlay events 60% of the events z_vtx resolution ~ 40μ m or better
- > 40% events either neutral events or events with 1 track or no tracks - only cluster information

Swathi Sasikumar | Hadron Production in photon-photon processes | 20-00-1/ | raye

Z position of MC vertices

> Every chargino decays to one charged particle and other particles as per the BR

> Signal - green and overlay in reddish-brown

> Vertices of charged stable particles plotted

> Every $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \gamma$ gives two tracks

> Events with different number of $\gamma\gamma$ overlay events shown

26-06-17

Page

Reconstruction level and the track parameters

- Standard vertex finding algorithm reconstructs one single vertex for each event
- >With smeared vertices it is important to have a more complex algorithm which could group the tracks to find different vertices
- > This algorithm can be developed with the track parameters as the important tools
- Knowledge of displaced vertices along the z axisZ0 parameter of the track is important
- > Unlike the particles in $\gamma\gamma \rightarrow \text{low pt hadron}$ events, charginos have a finite life time which makes the d0 parameter important
- >Using this parameters we try to develop a new algorithm which groups the closest tracks to form vertex positions

Detailed study of d0 parameter

>d0 and the d0 significance of the of the pure signal and pure $\gamma\gamma$ events plotted as below

>d0 and d0 significance for the signal much wider than the background

>Due to higher spread d0 significance would be more relevant than the use of pure d0

Detailed study of d0 parameter

- Chargino different branching ratios but always decays into one charged particle
- >Every event should have two tracks from the signal $(\tilde{\chi}_1^+, \tilde{\chi}_1^-)$
- The d0 significance of the two tracks of the signal are plotted
- >60 % cases one track has high value of d0 significance and other is smaller
- Rest 40 % cases d0 significance for both tracks are similar

Precuts for the algorithm

- Tracks curling vigorously perpendicular to the z axis entering the TPC
- Challenging for the tracker to identify the hits from a single track
- Many tracks reconstructed in such cases
- To avoid such events a cut of Ntrks < 12 is applied</p>
- >The event should have a hard ISR photon with E > 10 GeV
- ISR photon gives a pt kick to the beam electron -
 - missing energy from beam particles - overlay events

Z0 of the track should be less than 15 mm as the others can be particles created from the detector material

Algorithm

True no. of vertices Vs no. of groups

- No. of groups made by the algorithm compared to true number of vertices
- >Very preliminary study
- >~70 % of the events diagonal
- >60% both charginos reconstructed
- >15 % one track, 22 % tracks split tracks due to curling
- Count on true no of vertices not always right due to secondary vertices - complex events
- >Work in progress

Conclusion and Outlook

- >Impact of $\gamma\gamma \rightarrow$ low pt hadron overlay on the higgsino events very important
- >Existing standard methods to remove these backgrounds remain inefficient in this case
- >Displaced vertices for the signal and background events and the finite life time of the charginos very important factors to develop new method
- New algorithm leading towards the method to remove the $\gamma\gamma \rightarrow \text{low pt}$ hadron events developed
- > Work in progress!!!

>OUTLOOK:

- Algorithm is to be optimized with better track quality cuts
- Different track groups given by the algorithm identified as the signal or background using the ISR photon cut and the PID's of the particles

Swathi Sasikumar | Hadron Production in photon-photon processes | 26-06-17 | Page

Summary and Outlook

- > Although physics environment at ILC is very clean $\gamma\gamma$ backgrounds is still important
- > The impact of this overlay is found on a very few specific but important events
- > A better generator to produce $\gamma\gamma \rightarrow$ low pt hadrons was developed with more realistic particle contents for events
- Investigating whether different z_vtx position and vector meson tag can be used to remove the backgrounds
- > Work in progress!!
- > OUTLOOK:
 - The method developed will be applied on higgsino samples and Hale Sert's study would be repeated but with inclusion of $\gamma\gamma$ overlay

Method Development to remove backgrounds

- > Primary step separating events as in table
 - Pythia events complex 55 % events good chances for finding vertex
 - Only Separating Barklow events as below 45 %

Processes	No. events [%]	Methods to tackle
$\gamma\gamma \to \pi^+\pi^-$	33.43 %	displaced vertices
$\gamma\gamma o \pi^0\pi^0$	5.68 %	only photons 🙁
$\gamma\gamma \to \rho^+\rho^-$	1.26 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 ho^0$	2.68 %	displaced vertices & rho tag
$\gamma\gamma o ho^0 \omega$	0.7 %	displaced vertices & rho tag

Method - Using Rho meson tag

- > $\gamma \gamma \rightarrow \rho^0 \rho^0$ events rho meson decay to two π^+ and two π^- (2.68 %)
 - Events with exactly 2 ^{+ve} and 2 ^{-ve} tracks selected
 - Invariant mass calculated from two different combinations
 - mass closest to rho meson chosen and plotted
 - The pion combinations give rho mass -770 145 MeV ±
 - Only 0.54% events reconstructed exactly as 2 ^{+ve} and 2 ^{-ve} tracks

Event Properties of Pythia

- Direct Interactions(DIR) Real photons interacts directly
- Vector Meson Dominance(VMD) Photon fluctuates into a vector meson
- Anomalous Interactions(GVMD) Photon fluctuates into a $q\bar{q}$ pair of larger virtuality
- Deep inelastic Scattering(DIS) A process of probing the Hadrons with very high energy leptons.

Subprocesses	Cross-sections (nb)
VMD * VMD	239.2
DIR * VMD	87.52
GVMD * DIR	9.77
GVMD * GVMD	12.05

> Pythia cannot simulate below 2 GeV

Photon Sources

> e⁺ e⁻ beams are accompanied by :

> Real photons fr(x):

 Beamstrahlung - emission of real photons in high electrical field of oncoming bunch

> Virtual photons f_v(x):

 Weizsaecker-Williams process - emission of virtual photons which can interact with an oncoming photon or an electron

Swathi Sasikumar | Hadron Production in photon-photon processes | 26-06-17 | Page

Cross sections for Pythia events

- Comparison of γγ how Pt hadron process cross sections from Pythia with PDG, Amaldi et.al(hep-ph/9305247) and data from LEP,PETRA and VEPP
- > $\sqrt{s_{\gamma\gamma}}$ > 10 GeV : Good description of LEP data with Pythia
- > $\sqrt{s_{\gamma\gamma}}$ < 10 GeV: Measurements have large uncertainties and widespread
- Pythia event properties studied in detail for better understanding

Photon-Photon Interactions

- > Photons interact in different ways
- Vector meson dominance -Most dominating subprocess
- > What are vector mesons? $\rho, \omega, \phi, J/\psi, \Upsilon$
- > Photon fluctuates into a vector meson since it has got the same quantum properties
- > Photon is a hadron 1/400 of the time
- > Highest probability to fluctuate into rho meson
- > Production of huge amount of low Pt hadrons

Does $\sqrt{s_{\gamma\gamma}}$ < 1 GeV matter?

- > Detector acceptance for $\sqrt{\ll}$ GeV
 - Select events $\sqrt{s_{\gamma}} 1 \text{ GeV}$
 - Events generated from real-real, real-virtual and virtual-virtual photon collisions
 - Simulate ILD in SGV fast simulation
- > Reconstruction in SGV
 - Particles having 3 layer hits : "Charged"
 - Particles hitting calorimeter : "Neutral"

Ref: archiv:1203.0217v1

Event Properties of Pythia

Momentum acceptance for Pions

- > Momentum acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

A dedicated event generator for $\gamma\gamma$ processes

- > For $\sqrt{s_{\gamma\gamma}}$ > 2 GeV Pythia 6 used to simulate $\gamma\gamma \rightarrow \text{low pT hadron processes}$
- > Below 2 π_m pure QED beam-beam interactions modeled by dedicated programs - Guinea Pig
- Need to evaluate the impact of uncovered region how can it be modeled?
- > Dedicated generator developed in ILC community to study low energy region by Tim Barklow
- > The particles below 2 GeV Very low Pt
- > Could these particles be observed in the detector?
- > How important is it to model this area?

Angular acceptance for Pions

- Angular acceptance:
 - Dividing seen stable pions with all true pions
 - The acceptance for most particles > 80%
 - Particles with high Pt but moving in forward direction - low acceptance

Momentum acceptance of pions with full simulation

- Cross checked the results with full simulation
- acceptance for pions at $\sqrt{\sqrt{2}}$ GeV
- Acceptance reasonable enough to > model the region below 2 GeV
- Work under progress to confirm the > results

Modeling the low energy regime

- The issues discovered studied and conveyed to the author
- As expected from Chiral sum rule and Regge theory the generator now produces large variety of events
- The cross-sections for producing iggreater than ρ^{\pm}
- A better version of the generator was thus developed correcting the issues in older versionbig progress!!!

