EFT fit on top quark EW couplings

I. García, <u>M. Perelló Roselló</u>, M. Vos (IFIC - U. Valencia/CSIC) P. Roloff, R. Ström (CERN) G. Durieux (DESY), C. Zhang (IHEP)

Acknowledging input/contributions from:

M. Boronat, J. Fuster, P. Gomis, E. Ros (IFIC - U. Valencia/CSIC) R. Pöschl, F. Richard (Orsay, LAL)

Outline

- Introduction to quark couplings and EFT
- Observables sensitivities:
 - Afb + cross-section
 - Optimal CP-odd observables
 - Top quark polarization
 - Statistically optimal observables
- Full-simulation at CLIC380 and ILC500
- Full-simulation at high energies

Introduction to quark couplings and EFT

Top quark couplings

Dim-6 operators

$$O_{\varphi q}^{1} \equiv \frac{y_{t}^{2}}{2} \ \bar{q} \gamma^{\mu} q \ \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi$$

$$O_{\varphi q}^{3} \equiv \frac{y_{t}^{2}}{2} \ \bar{q} \tau^{I} \gamma^{\mu} q \ \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi$$

$$O_{\varphi u} \equiv \frac{y_{t}^{2}}{2} \ \bar{u} \gamma^{\mu} u \ \varphi^{\dagger} i \overrightarrow{D}_{\mu} \varphi$$

$$O_{\varphi u d} \equiv \frac{y_{t}^{2}}{2} \ \bar{u} \gamma^{\mu} d \ \varphi^{T} \epsilon i D_{\mu} \varphi$$

$$O_{u G} \equiv y_{t} g_{s} \ \bar{q} T^{A} \sigma^{\mu\nu} u \ \epsilon \varphi^{*} G_{\mu\nu}^{A}$$

$$O_{u W} \equiv y_{t} g_{W} \ \bar{q} \tau^{I} \sigma^{\mu\nu} u \ \epsilon \varphi^{*} W_{\mu\nu}^{I}$$

$$O_{u B} \equiv y_{t} g_{Y} \ \bar{q} \sigma^{\mu\nu} u \ \epsilon \varphi^{*} B_{\mu\nu}$$

$$W t b vertex$$

$$W^{-}_{\mu} \psi^{-}_{\nu_{l}, d}$$

$$V t vertices$$

$$V t vertices$$

$$V t vertices$$

$$\begin{array}{ccc}
O_{lq}^{1} \equiv \bar{q}\gamma_{\mu}q & \bar{l}\gamma^{\mu}l \\
O_{lq}^{3} \equiv \bar{q}\tau^{I}\gamma_{\mu}q & \bar{l}\tau^{I}\gamma^{\mu}l \\
O_{lu} \equiv \bar{u}\gamma_{\mu}u & \bar{l}\gamma^{\mu}l \\
O_{lu} \equiv \bar{u}\gamma_{\mu}u & \bar{l}\gamma^{\mu}l \\
O_{eq} \equiv \bar{q}\gamma_{\mu}q & \bar{e}\gamma^{\mu}e \\
O_{eu} \equiv \bar{u}\gamma_{\mu}u & \bar{e}\gamma^{\mu}e
\end{array}$$

Change of basis

Transformation between effective operators and form-factors:

$$\begin{array}{lll} & \text{We can change to} \\ & F_{1,V}^{Z} - F_{1,V}^{Z,SM} &= \frac{1}{2} \left(\underline{C}_{\varphi Q}^{(3)} - \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi q} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{V} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ & F_{1,A}^{Z} - F_{1,A}^{Z,SM} &= \frac{1}{2} \left(-\underline{C}_{\varphi Q}^{(3)} + \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi q} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ & F_{1,A}^{Z} - F_{1,A}^{Z,SM} &= \frac{1}{2} \left(-\underline{C}_{\varphi Q}^{(3)} + \underline{C}_{\varphi Q}^{(1)} - \underline{C}_{\varphi q} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = -\frac{1}{2} \underline{C}_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ & F_{2,V}^{Z} &= \left(\underline{\operatorname{Re}\{C_{tW}\}c_{W}^{2} - \operatorname{Re}\{C_{tB}\}s_{W}^{2}} \right) \frac{4m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} = \operatorname{Re}\{\underline{C}_{uZ}\} \frac{4m_{t}^{2}}{\Lambda^{2}} \\ & F_{2,V}^{\gamma} &= \left(\underline{\operatorname{Re}\{C_{tW}\} + \operatorname{Re}\{C_{tB}\}} \right) \frac{4m_{t}^{2}}{\Lambda^{2}} = \operatorname{Re}\{\underline{C}_{uA}\} \frac{4m_{t}^{2}}{\Lambda^{2}} \\ & \left[F_{2,A}^{Z}, F_{2,A}^{\gamma} \right] \propto \left[\operatorname{Im}\{C_{tW}\}, \operatorname{Im}\{C_{tB}\} \right] \end{array}$$

Conversion to V/A - V basis in contact interactions:

$$C_{lq}^{V} \equiv C_{lu} + C_{lq}^{(1)} - C_{lq}^{(3)} \qquad C_{eq}^{V} \equiv C_{eu} + C_{eq}$$
$$C_{lq}^{A} \equiv C_{lu} - C_{lq}^{(1)} + C_{lq}^{(3)} \qquad C_{eq}^{A} \equiv C_{eu} - C_{eq}$$

Observables sensitivities

Observables sensitivity: Afb + cross-section

Optimal CP-odd observables

The **CP-violating effects** in $e^+e^- \rightarrow t\bar{t}$ manifest themselves in specific **top-spin** effects, namely **CP-odd top spin-momentum correlations and tt** spin correlations.

$e^{+}(\mathbf{p}_{+}, P_{e^{+}}) + e^{-}(\mathbf{p}_{-}, P_{e^{-}}) = \underbrace{\mathsf{to}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})} \operatorname{\mathsf{changed}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})} \operatorname{\mathsf{top}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})} \operatorname{\mathsf{top}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})} \operatorname{\mathsf{top}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})} \operatorname{\mathsf{top}}_{t(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t}) + \overline{t}(\mathbf{k}_{t})$

 CP-odd observables are defined with the four momenta available in tt semileptonic decay channel

$$\mathcal{O}_{+}^{Re} = (\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}) \cdot \hat{\mathbf{p}}_{+},
\mathcal{O}_{+}^{Im} = -[1 + (\frac{\sqrt{s}}{2m_{t}} - 1)(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+})^{2}]\hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}} + \frac{\sqrt{s}}{2m_{t}}\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+}$$

 The way to extract the CP-violating form factor is to construct asymmetries sensitive to CP-violation effects

$$\mathcal{A}^{Re} = \langle \mathcal{O}^{Re}_{+} \rangle - \langle \mathcal{O}^{Re}_{-} \rangle = c_{\gamma}(s) \operatorname{Re} F_{2A}^{\gamma} + c_{Z}(s) \operatorname{Re} F_{2A}^{Z}$$
$$\mathcal{A}^{Im} = \langle \mathcal{O}^{Im}_{+} \rangle - \langle \mathcal{O}^{Im}_{-} \rangle = \tilde{c}_{\gamma}(s) \operatorname{Im} F_{2A}^{\gamma} + \tilde{c}_{Z}(s) \operatorname{Im} F_{2A}^{Z}$$

$$\begin{array}{c} \mathcal{A}_{\gamma,Z}^{Re} \overset{\mathsf{L}}{\rightarrow} \mathcal{A}_{\gamma,Z}^{Re} \end{array} \\ \mathcal{A}_{\gamma,Z}^{Im} \overset{\mathsf{R}}{\rightarrow} \mathcal{A}_{\gamma,Z}^{Im} \overset{\mathsf{R}}{\rightarrow} \end{array}$$

Prospects of CPV opt. obs.

- ILC500 and CLIC380 have a very similar sensitivity to form factors, reaching limits of IF_{2A}^y I<0.01.
- Assuming that systematic uncertainties can be controlled to the required level, a luminosity upgrade of both machines **may bring a further improvement.**

Top quark polarization at different axes

Statistically optimal observables

G. Durieux @TopLC 2017:

https://indico.cern.ch/event/595651/contributions/2573918/attachments/1473086/2280215/durieux-top-lc-2017.pdf

Statistically optimal observables

[Atwood,Soni '92] [Diehl,Nachtmann '94]

minimize the one-sigma ellipsoid in EFT parameter space. (*joint efficient* set of estimators, saturating the Rao-Cramér-Fréchet bound: $V^{-1} = I$)

For small C_i , with a phase-space distribution $\sigma(\Phi) = \sigma_0(\Phi) + \sum_i C_i \sigma_i(\Phi)$, the statistically optimal set of observables is: $O_i(\Phi) = \sigma_i(\Phi) / \sigma_0(\Phi)$.

a.g.
$$\sigma(\phi) = 1 + \cos(\phi) + C_1 \sin(\phi) + C_2 \sin(2\phi)$$

- **1**. asymmetries: $O_i \sim \text{sign}\{\sin(i\phi)\}$
- 2. moments: $O_i \sim \sin(i\phi)$
- 3. statistically optimal: $O_i \sim \frac{\sin(i\phi)}{1 + \cos\phi}$

 \implies area ratios 1.9 : 1.7 : 1

Previous applications in $e^+e^- \rightarrow t \,\overline{t}$: [Grzadkowski, Hioki '00] [Janot '15] [Khiem et al '15]

Statistically optimal observables sensitivities

Comparison in the global limits (500GeV + 1TeV for 2 pols.):

Statistically optimal observables shape

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 $d\sigma/d(\frac{1}{n}O^A_{eq})$ [pb]

-0.027 resonant LO -0.027 non-resonant LO

 $-0.036^{-0.2\%}_{+0.2\%}$ non-resonant NLO QCD

Example for 500 GeV (e-, e+) = (-0.8, 0.3)

Theory uncertainties below 1% for the distributions means

LCWS 2017 - Strasbourg - 26/10/17

Martín Perelló, IFIC

14

Full-simulation at CLIC380 and ILC500

Full-simulation

Studied process

 $e^-e^+ \to t\bar{t} \to W^+ b W^- \bar{b} \to l \nu b \bar{b} q \bar{q}$

 $\sqrt{s} = \{380, 500, 1000, 1400, 3000\} \text{ GeV}$

	380 GeV	500 GeV	1 TeV	1.4 TeV	3 TeV
Pol (e-, e+)	(-0.8, 0)	(-0.8, +0.3)	(-0.8, +0.2)	(-0.8, 0)	(-0.8, 0)
	(+0.8, 0)	(+0.8, -0.3)	(+0.8, -0.2)	(+0.8, 0)	(+0.8, 0)
σ[L,R] (fb)	792	930	256	113	25
σ[R,L] (fb)	418	480	142	66	15
Lumi (fb-1)	500	500	1000	1500	3000

Studies at CLIC380 and ILC500 included in I. Garcia thesis

ILC@500GeV L=500fb ⁻¹ [arXiv:1505.06020]		CLIC@380GeV L=500fb ⁻¹						
$\mathcal{P}_{e^-}, \mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{\rm stat.}$ (%)	$(\delta A_{\rm FB}^t/A_{\rm FB}^t)_{\rm stat.}$ (%)	$\mathcal{P}_{e^-}, \mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{\rm stat.}$ (%)	$(\delta A_{\rm FB}^t/A_{\rm FB}^t)_{\rm stat.}$ (%)			
-0.8, +0.3	0.47	1.8	-0.8, 0	0.47	3.8			
+0.8, -0.3	0.63	1.3	+0.8, 0	0.83	4.6			

Full-simulation at CLIC@380 and ILC@500

Studied process $e^-e^+ \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b} \rightarrow l\nu b\bar{b}q\bar{q}$

Same cuts used in previous studies which reduce background.

Signal selection:

- Hadronic top in the range: 120 < mt < 230
 Hadronic W: 50 < mW < 110
- only 1 lepton per event
- \cdot 2 b-tags (b-tag1 > 0.8 and b-tag2 > 0.5)

Statistical uncertainties:

0	=	(Σ	σ_{i}	/σ_)					
(normalization)									

 $O_i = 1/n(\Sigma \sigma_i / \sigma_0)$ (distribution mean)

*Absolute uncertainty

statistical uncertainty [%]	cross- section	lqA	eqA	pqA	lqV	eqV	pqV	ReuZ	ReuA	ImuZ*	ImuA*	ľ
380 (e-,e+) = (-0.8, 0)	0,8	3	5	3	0,1	0,5	0,1	0,2	0,1	1E-3	2E-3	
380 (e-,e+) = (0.8, 0)	0,8	5	4	4	0,5	0,1	0,3	0,2	0,1	2E-3	2E-3	
500 (e-,e+) = (-0.8, 0.3)	0,6	2	8	2	0,2	4	0,2	0,3	0,2	2E-3	4E-3	
500 (e-,e+) = (0.8, -0.3)	0,8	6	2	2	2	0,4	0,7	0,7	0,3	4E-3	7E-3	

Starting reconstruction at CLIC@380 and ILC@500

Need of a quality cut (mainly for reducing migrations)

$$\chi^2 = \left(\frac{\gamma_t - \gamma_t^{MC}}{\sigma_{\gamma_t}}\right)^2 + \left(\frac{E_b^* - E_b^{*MC}}{\sigma_{E_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - \cos\theta_{bW}^{MC}}{\sigma_{\cos\theta_{bW}}}\right)^2$$

Similar behaviour we oberved in the Afb study.

Selection effects

Normalization: Biases around 3σ Shape: Selection biases around 1σ - 3σ

Reconstruction effects

Normalization: biases $< 1\sigma$ Shape: Reconstruction biases around $1\sigma - 2\sigma$

Residual uncertainty expected to be smaller than the effect

Beam structure effects (using WHIZARD 2.6.0 for MC generation)

Beamstrahlung (switching on/off CIRCE2 package)

Normalization: 20σ Shape: Biases < 1σ in all cases Uncertainty to be estimated with Bhabha scattering study

ISR (Switching on/off ISR)

Normalization: 20σ Shape: Biases around $1\sigma - 2\sigma$ Uncertainty from parameters variation < 1%

Full-simulation at high energies

For a detailed explanation visit R. Ström's talk at CLICdp Collaboration Meeting: <u>https://indico.cern.ch/event/633975/</u> <u>contributions/2689114/</u>

Boosted top reconstruction techniques

- Jet clustering (incl. trimming)
 - 2 exclusive large-R jets
- Jet tagging:
 - Parsing sub-structure (method 1)
 - Jet structure variables (method 2)

 not explained here, see
 Alasdair Winter's talk at CLIC
 WS 2017 (https://indico.cern.ch/event/ 577810/contributions/2485031/)
- B-tagging (sub-jet, fat-jet)

Solid optimization in jet clustering parameters by Rickard Ström

Gamma optimisation plot (1000 + 10000 + 1000 + 10000 + 1000 + 1000 + 1000 +

Jet trimming

- Jet trimming is a complementary way to reduce the impact from beamstrahlung
- Pre-clustering into micro-jets
 - Inclusive clustering with minimum p_T threshold
 - generalised kt algoritm (~ kt for e+e- + beam jets)
 - p_T threshold and micro-jet radius optimised (E_{th}=5 GeV, R=0.4)

Parsing sub-structure (method 1)

- Jet de-clustering (FastJet extension), DOI: 10.1103/ PhysRevLett.101.142001
- VLC jet clustering algorithm (R=1.5, β=1, γ=1) + trimming
- "JH Top Tagger" + kinematic cuts ($m_t \in [145,205]$ GeV, $m_W \in [65,95]$ GeV)

Full-simulation at CLIC1400

Conclusions

- Cross-section + Afb are not enough for global EFT fit. Top polarisation at different axes and CP-odd observables help in the operators disentangling.
- Optimal observables seem to be the proper solution and are found to be robust
- Reconstruction new techniques at high energies are making progress providing first results for Afb @CLIC1400.

Back up

Global Fit: Afb + σ

Studied process $e^-e^+ \rightarrow W^+bW^-\bar{b}$ @NLO [Motivation from arXiv:1411.2355]

ILC: 500 GeV + 1 TeV

CLIC: 380 GeV + 1.4 TeV + (3) TeV

Similar behaviour at $e^-e^+ \rightarrow t\bar{t}$ @LO and $e^-e^+ \rightarrow W^+bW^-\bar{b}$ @NLO (QCD)

Low uncertainties are achieved, but we can do it better

We should improve the marginalized fit