EFT fit on top quark EW couplings

I. García, M. Perelló Roselló, M. Vos (IFIC - U. Valencia/CSIC) P. Roloff, R. Ström (CERN)
G. Durieux (DESY), C. Zhang (IHEP)

Acknowledging input/contributions from:
M. Boronat, J. Fuster, P. Gomis, E. Ros (IFIC - U. Valencia/CSIC)
R. Pöschl, F. Richard (Orsay, LAL)

Outline

- Introduction to quark couplings and EFT
- Observables sensitivities:
- Afb + cross-section
- Optimal CP-odd observables
- Top quark polarization
- Statistically optimal observables
- Full-simulation at CLIC380 and ILC500
- Full-simulation at high energies

Introduction to quark couplings and EFT

Top quark couplings

Objective: to study the potential of a global fit in the top EW sector.

Form-factors

$$
\Gamma_{\mu}^{t \bar{t} X}\left(k^{2}, q, \bar{q}\right)=i e\left\{\gamma_{\mu}\left(F_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{1 A}^{X}\left(k^{2}\right)\right)-\frac{\sigma_{\mu \nu}}{2 m_{t}}(q+\bar{q})^{\nu}\left(i F_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} F_{2 A}^{X}\left(k^{2}\right)\right)\right\}
$$

Effective Field Theory

$$
\mathcal{L}_{e f f}=\mathcal{L}_{S M}+\frac{1}{\Lambda^{2}} \sum_{i} C_{i} O_{i}+\mathcal{O}\left(\Lambda^{-4}\right)
$$

Dim-6 operators

$$
\begin{array}{rlll}
O_{\varphi q}^{1} & \equiv \frac{y_{t}^{2}}{2} & \bar{q} \gamma^{\mu} q & \varphi^{\dagger} i \overleftrightarrow{D_{\mu}} \varphi \\
O_{\varphi q}^{3} & \equiv \frac{y_{t}^{2}}{2} & \bar{q} \tau^{\prime} \gamma^{\mu} q & \varphi^{\dagger} \stackrel{\overleftrightarrow{D}}{\mu}{ }_{\mu}^{I} \varphi \\
O_{\varphi u} & \equiv \frac{y_{t}^{2}}{2} & \bar{u} \gamma^{\mu} u & \varphi^{\dagger}{ }^{i} \overleftrightarrow{D_{\mu}} \varphi \\
O_{\varphi u d} & \equiv \frac{y_{t}^{2}}{2} & \bar{u} \gamma^{\mu} d & \varphi^{T} \epsilon i D_{\mu} \varphi \\
O_{u G} & \equiv y_{t} g_{s} & \bar{q} T^{A} \sigma^{\mu \nu} u & \epsilon \varphi^{*} G_{\mu \nu}^{A} \\
O_{u W} & \equiv y_{t} g_{W} & \bar{q} \tau^{I} \sigma^{\mu \nu} u & \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
O_{d W} & \equiv y_{t} g_{W} & \bar{q} \tau^{I} \sigma^{\mu \nu} d & \epsilon \varphi^{*} W_{\mu \nu}^{I} \\
O_{u B} & \equiv y_{t} g_{Y} & \bar{q} \sigma^{\mu \nu} u & \epsilon \varphi^{*} B_{\mu \nu}
\end{array}
$$

$O_{l q}^{1} \equiv \bar{q} \gamma_{\mu} q \quad \bar{\imath} \gamma^{\mu} \mid$
$O_{l q}^{3} \equiv \bar{q} \tau^{I} \gamma_{\mu} q \overline{\tau^{\prime}} \tau^{I} \gamma^{\mu} \mid$
$O_{l u} \equiv \bar{u} \gamma_{\mu} u \quad \bar{l} \gamma^{\mu} \mid \quad O_{\text {lequ }}^{T} \equiv \bar{q} \sigma^{\mu \nu} u \epsilon \bar{l} \sigma_{\mu \nu} e$
$O_{e q} \equiv \bar{q} \gamma_{\mu} q \quad \bar{e} \gamma^{\mu} e$
$O_{e u} \equiv \bar{u} \gamma_{\mu} u \quad \bar{e} \gamma^{\mu} e$

Contact interactions

$$
\begin{aligned}
& O_{l e q u}^{S} \equiv \bar{q} u \epsilon \bar{l} e \\
& O_{l e d q} \equiv \bar{d} q \bar{l} e
\end{aligned}
$$

Change of basis

Transformation between effective operators and form-factors:

$$
\begin{aligned}
& F_{1, V}^{Z}-F_{1, V}^{Z, S M}=\frac{1}{2}\left(\underline{C_{\varphi Q}^{(3)}-C_{\varphi Q}^{(1)}-C_{\varphi t}}\right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=-\frac{1}{2} \underline{C_{\varphi q}^{V}} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \quad \begin{array}{c}
\begin{array}{c}
\text { We can change to } \\
\text { an alternative basis } \\
\text { (Vector/Axial - }
\end{array} \\
F_{1, A}^{Z}-F_{1, A}^{Z, S M}
\end{array} \\
&=\frac{1}{2}\left(\underline{-C_{\varphi Q}^{(3)}+C_{\varphi Q}^{(1)}-C_{\varphi t}}\right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=-\frac{1}{2} \underline{C_{\varphi q}^{A} \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}} \quad \begin{array}{l}
\text { Vector) }
\end{array} \\
& F_{2, V}^{Z}=\left(\underline{\operatorname{Re}\left\{C_{t W}\right\} c_{W}^{2}-\operatorname{Re}\left\{C_{t B}\right\} s_{W}^{2}}\right) \frac{4 m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}}=\operatorname{Re}\left\{\underline{\left.C_{u Z}\right\}} \frac{4 m_{t}^{2}}{\Lambda^{2}}\right. \\
& F_{2, V}^{\gamma}=\left(\underline{\operatorname{Re}\left\{C_{t W}\right\}+\operatorname{Re}\left\{C_{t B}\right\}}\right) \frac{4 m_{t}^{2}}{\Lambda^{2}}=\operatorname{Re}\left\{\underline{\left.C_{u A}\right\}} \frac{4 m_{t}^{2}}{\Lambda^{2}}\right. \\
& {\left[F_{2, A}^{Z}, F_{2, A}^{\gamma}\right] } \propto\left[\operatorname{Im}\left\{C_{t W}\right\}, \operatorname{Im}\left\{C_{t B}\right\}\right]
\end{aligned}
$$

Conversion to V/A - V basis in contact interactions:

$$
\begin{array}{rlrl}
C_{l q}^{V} & \equiv C_{l u}+C_{l q}^{(1)}-C_{l q}^{(3)} & C_{e q}^{V} \equiv C_{e u}+C_{e q} \\
C_{l q}^{A} \equiv C_{l u}-C_{l q}^{(1)}+C_{l q}^{(3)} & C_{e q}^{A} \equiv C_{e u}-C_{e q}
\end{array}
$$

Observables sensitivities

Observables sensitivity: Afb + cross-section

$e^{+} e^{-} \rightarrow t \bar{t}, \mathrm{LO} \quad$ Durieux, Perelló, Vos, Zhang, to be published

Sensivitity:

Relative change in cross-

Forward-backward asymmetry

(multi-) TeV operation provides $\sigma+A^{\mathrm{FB}}$: better sensitivity to contactinteraction operators.

- Very good individual limits
- Global limits factor $\mathbf{3}$ to $\mathbf{8 0}$ worse

Cross-section

Global contraints $500 \mathrm{GeV}+1 \mathrm{TeV}$ for 2 polarisations

Optimal CP-odd observables

The CP-violating effects in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{tt}^{-}$manifest themselves in specific top-spin effects, namely CP-odd top spin-momentum correlations and tt ${ }^{-}$spin correlations.

 CP-odd observables are defined with the four momenta available in tt semileptonic decay channel$$
\begin{aligned}
\mathcal{O}_{+}^{R e} & =\left(\hat{\mathbf{q}}_{\bar{X}} \times \hat{\mathbf{q}}_{+}^{*}\right) \cdot \hat{\mathbf{p}}_{+}, \\
\mathcal{O}_{+}^{I m} & =-\left[1+\left(\frac{\sqrt{s}}{2 m_{t}}-1\right)\left(\hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+}\right)^{2}\right] \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{q}}_{\bar{X}}+\frac{\sqrt{s}}{2 m_{t}} \hat{\mathbf{q}}_{\bar{X}} \cdot \hat{\mathbf{p}}_{+} \hat{\mathbf{q}}_{+}^{*} \cdot \hat{\mathbf{p}}_{+}
\end{aligned}
$$

- The way to extract the CP-violating form factor is to construct asymmetries sensitive to CP-violation effects

$$
\begin{aligned}
& \mathcal{A}^{R e}=\left\langle\mathcal{O}_{+}^{R e}\right\rangle-\left\langle\mathcal{O}_{-}^{R e}\right\rangle=c_{\gamma}(s) \operatorname{Re} F_{2 A}^{\gamma}+c_{Z}(s) \operatorname{Re} F_{2 A}^{Z} \\
& \mathcal{A}^{I m}=\left\langle\mathcal{O}_{+}^{I m}\right\rangle-\left\langle\mathcal{O}_{-}^{I m}\right\rangle=\tilde{\gamma}_{\gamma}(s) \operatorname{Im} F_{2 A}^{\gamma}+\tilde{c}_{Z}(s) \operatorname{Im} F_{2 A}^{Z}
\end{aligned}
$$

$$
\begin{array}{|cc|}
\hline \mathcal{A}_{\gamma, Z}^{R e^{\mathrm{L}}} & \mathcal{A}_{\gamma, Z}^{R e} \\
\\
\mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} & \mathcal{A}_{\gamma, Z}^{I m} \mathrm{R} \\
\hline
\end{array}
$$

Prospects of CPV opt. obs.

- ILC500 and CLIC380 have a very similar sensitivity to form factors, reaching limits of $\mathrm{IF}_{2 A^{Y}} \mathrm{l}<0.01$.
- Assuming that systematic uncertainties can be controlled to the required level, a luminosity upgrade of both machines may bring a further improvement.

Including CPV observables in the EFT global fit...

$$
\left[F_{2, A}^{Z}, F_{2, A}^{\gamma}\right] \propto\left[\operatorname{Im}\left\{C_{u A}\right\}, \operatorname{Im}\left\{C_{u Z}\right\}\right]
$$

Top quark polarization at different axes

Studied process

$$
e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q}
$$

Top polarization in the transverse axis (perpendicular to the top flight direction in the production plane) provides good sensitivity to the real part of dipoles operators (CtW and CtB).

Statistically optimal observables

G. Durieux @TopLC 2017:

https://indico.cern.ch/event/595651/contributions/2573918/attachments/1473086/2280215/durieux-top-Ic-2017.pdf

Statistically optimal observables

[Atwood,Soni '92]
[Diehl,Nachtmann '94]

minimize the one-sigma ellipsoid in EFT parameter space.

(joint efficient set of estimators, saturating the Rao-Cramér-Fréchet bound: $V^{-1}=I$)

For small C_{i}, with a phase-space distribution $\sigma(\Phi)=\sigma_{0}(\Phi)+\sum_{i} C_{i} \sigma_{i}(\Phi)$, the statistically optimal set of observables is: $O_{i}(\Phi)=\sigma_{i}(\Phi) / \sigma_{0}(\Phi)$.

e.g. $\sigma(\phi)=1+\cos (\phi)+C_{1} \sin (\phi)+C_{2} \sin (2 \phi)$

1. asymmetries: $O_{i} \sim \operatorname{sign}\{\sin (i \phi)\}$
2. moments: $O_{i} \sim \sin (i \phi)$
3. statistically optimal: $O_{i} \sim \frac{\sin (i \phi)}{1+\cos \phi}$
\Longrightarrow area ratios $1.9: 1.7: 1$

Previous applications in $e^{+} e^{-} \rightarrow t \bar{t}$:
[Grzadkowski, Hioki '00] [Janot '15] [Khiem et al '15]

Statistically optimal observables sensitivities

Comparison in the global limits ($500 \mathrm{GeV}+1 \mathrm{TeV}$ for 2 pols.):

- Even better individual limits
- Global limits within a factor 1.3 to 3.5
Martín Perelló, IFIC $13 \quad$ LCWS 2017-Strasbourg - 26/10/17

Statistically optimal observables shape

Example for $500 \mathrm{GeV}(\mathrm{e}-, \mathrm{e}+)=(-0.8,0.3)$

Theory uncertainties below 1% for the distributions means

Full-simulation at CLIC380 and ILC500

Full-simulation

Studied process

$$
\begin{aligned}
& e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q} \\
& \sqrt{s}=\{380,500,1000,1400,3000\} \\
& \mathbf{G e V} \square \text { cLIc }
\end{aligned}
$$

	380 GeV	500 GeV	1 TeV	1.4 TeV	3 TeV
Pol (e-, e+)	$(-0.8,0)$	$(-0.8,+0.3)$	$(-0.8,+0.2)$	$(-0.8,0)$	$(-0.8,0)$
o[L,R] (fb)	792	930	256	113	25
$\sigma[\mathbf{R}, \mathrm{~L}](\mathrm{fb})$	418	480	142	66	15
Lumi (fb-1)	500	500	1000	1500	3000

Studies at CLIC380 and ILC500 included in I. Garcia thesis

ILC@500GeV L=500fb-1
[arXiv:1505.06020]

$\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}$	$(\delta \sigma / \sigma)_{\text {stat. }}(\%)$	$\left(\delta A_{\mathrm{FB}}^{t} / A_{\mathrm{FB}}^{t}\right)_{\text {stat. }}(\%)$
$-0.8,+0.3$	0.47	1.8
$+0.8,-0.3$	0.63	1.3

CLIC@380GeV L=500fb-1

$\mathcal{P}_{e^{-}}, \mathcal{P}_{e^{+}}$	$(\delta \sigma / \sigma)_{\text {stat. }}(\%)$	$\left(\delta A_{\mathrm{FB}}^{t} / A_{\mathrm{FB}}^{t}\right)_{\mathrm{stat} .}(\%)$
-0.8,	0	0.47
+0.8,	0	0.83

Full-simulation at CLIC@380 and ILC@500

Studied process

$e^{-} e^{+} \rightarrow t \bar{t} \rightarrow W^{+} b W^{-} \bar{b} \rightarrow l \nu b \bar{b} q \bar{q}$
Same cuts used in previous studies which reduce background.

Signal selection:

- Hadronic top in the range: $120<\mathrm{mt}<230$
- Hadronic W: $50<\mathrm{mW}<110$
only 1 lepton per event
2 b-tags (b-tag1 > 0.8 and b-tag2 >0.5)

Statistical uncertainties:

statistical uncertainty [\%]	crosssection	IqA	eqA	$p q A$	IqV	eqV	pqV	ReuZ	ReuA	ImuZ*	ImuA*
380 (e-,e+) $=(-0.8,0)$	0,8	3	5	3	0,1	0,5	0,1	0,2	0,1	1E-3	2E-3
380 (e-,e+) $=(0.8,0)$	0,8	5	4	4	0,5	0,1	0,3	0,2	0,1	2E-3	2E-3
500 (e-,e+) = (-0.8, 0.3)	0,6	2	8	2	0,2	4	0,2	0,3	0,2	2E-3	4E-3
$500(\mathrm{e}-, \mathrm{e}+$) $=(0.8,-0.3)$	0,8	6	2	2	2	0,4	0,7	0,7	0,3	4E-3	7E-3

*Absolute uncertainty

Reconstruction effects

Starting reconstruction at CLIC@380 and ILC@500

Need of a quality cut (mainly for reducing

$$
\chi^{2}=\left(\frac{\gamma_{t}-\gamma_{t}^{M C}}{\sigma_{\gamma_{t}}}\right)^{2}+\left(\frac{E_{b}^{*}-E_{b}^{* M C}}{\sigma_{E_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}-\cos \theta_{b W}^{M C}}{\sigma_{\cos \theta_{b W}}}\right)^{2}
$$ migrations)

	efficiency	quality cut chi2 < X	efficiency after quality cut
380L	37%	5	$\mathbf{1 8 \%}$
380R	$33,3 \%$	40	$\mathbf{3 0 , 4 \%}$
500L	$34,4 \%$	50	$\mathbf{2 9 , 4 \%}$
500R	35%	50	$\mathbf{3 0 , 1 \%}$

$380 \mathrm{GeV}(\mathrm{e}-\mathrm{e}+)=(-0.8,0)$

Similar behaviour we oberved in the Afb study.

Systematic uncertainties

Selection effects

Normalization: Biases around 3б
Shape: Selection biases around 1б-3б

Reconstruction effects

Residual uncertainty expected to be smaller than the effect

Normalization: biases < 1σ
Shape: Reconstruction biases around 1o-2 σ

Beam structure effects (using WHIZARD 2.6.0 for MC generation)

Beamstrahlung (switching on/off CIRCE2 package)

Normalization: 20 σ
Shape: Biases < 1σ in all cases
ISR (Switching on/off ISR)
Normalization: 20 σ
Shape: Biases around 1o-2б

Uncertainty to be estimated with Bhabha scattering study

> Uncertainty from parameters variation $<1 \%$

Full-simulation at high energies

For a detailed explanation visit R. Ström's talk at CLICdp Collaboration Meeting: https://indico.cern.ch/event/633975/ contributions/2689114/

Boosted top reconstruction techniques

- Jet clustering (incl. trimming)
- 2 exclusive large-R jets
- Jet tagging:
- Parsing sub-structure (method 1)
- Jet structure variables (method 2)
- not explained here, see Alasdair Winter's talk at CLIC WS 2017 (https://indico.cern.ch/event/ 577810/contributions/2485031/)
- B-tagging (sub-jet, fat-jet)

Solid optimization in jet clustering parameters by Rickard Ström

Gamma optimisation plot

Jet trimming

- Jet trimming is a complementary way to reduce the impact from beamstrahlung
- Pre-clustering into micro-jets
- Inclusive clustering with minimum p_{T} threshold
- generalised kt algoritm (~ kt for $\mathrm{e}^{+} \mathrm{e}^{-}+$beam jets)
- p_{T} threshold and micro-jet radius optimised ($\mathrm{E}_{\mathrm{th}}=5 \mathrm{GeV}, \mathrm{R}=0.4$)

Parsing sub-structure (method 1)

Parsing through jet cluster

Three subjects identified

fully-hadronic $\mathrm{e}^{+} \mathrm{e} \rightarrow \mathrm{tt} \rightarrow \mathrm{qq} 99 \mathrm{q}$
VLC15 (2 excl.), $\delta R, \delta P=0.05$
 $\mathrm{GeV}, \mathrm{m}_{\mathrm{w}} \in[65,95] \mathrm{GeV}$)

Full-simulation at CLIC1400

JH Top Tagger - results

- Top quark mass recovered for sufficiently large-R jet (efficiency drop for $\mathrm{R}<1.3$)
- Good discrepancy towards background processes without top
- More efficient than simple mass cut

Top quark A_{fb} results

- Less migration is observed for $\mathrm{P}\left(\mathrm{e}^{-}\right)=+80 \%$ Backgrounds substantially reduced
- Relative error on A_{fb} :
- $P\left(e^{-}\right)=-80 \%: ~ 2 \%$ (signal only)
- $P\left(e^{-}\right)=+80 \%: ~ 3 \%$ (signal only)
- Both methods yield a similar result

Conclusions

- Cross-section + Afb are not enough for global EFT fit. Top polarisation at different axes and CP-odd observables help in the operators disentangling.
- Optimal observables seem to be the proper solution and are found to be robust
- Reconstruction new techniques at high energies are making progress providing first results for Afb @CLIC1400.

Back up

Global Fit: Afb $+\sigma$

Studied process $e^{-} e^{+} \rightarrow W^{+} b W^{-} \bar{b} @$ NLO [Motivation from arXiv:1411.2355]
ILC: $500 \mathrm{GeV}+\mathbf{1} \mathrm{TeV} \quad \mathrm{CLIC:} \mathbf{3 8 0} \mathrm{GeV}+\mathbf{1 . 4} \mathrm{TeV}+(3) \mathrm{TeV}$

Individual: assuming variation in only 1 parameter each time.
Marginalized: assuming variation in all the parameters at the same time.
Similar behaviour at $e^{-} e^{+} \rightarrow t \bar{t} @ \mathrm{LO}$ and $e^{-} e^{+} \rightarrow W^{+} b W^{-} \bar{b} @ \mathrm{NLO}$ (QCD)
Low uncertainties are achieved, but we can do it better
We should improve the marginalized fit

